Botball Season

Welcome to the 2024 Botball Season

e

Moonbase Mission

- o

Professional Development Workshop B h lr
Page :1 © 1993 — 2024 KIPR # Dt a.

Botball Timeline

(- Recruit (e Game Release)
e Apply for_ e Workshops
Scholarship e On-line workshops

e Kits ships to school e Documentation

¢ Fall Game release Starts
e Online workshops e Documentation 1
available Due

« Social Media P ,

(
* Preparing for
GCER
« GCER
« Game
development k
N) ~

Professional Development Workshop # B h lr
Page :2 © 1993 - 2024 KIPR Dt a

* Fall Game Dec.

~N

* Documentation 2
Due
« Tournaments

* Onsite
Documentation

What to Expect During the Season

Before

Register for the
workshop

Build Demobot During
Build Create Demo-Bot

. ; : Bring all materials
Build Board if possible

Bring laptops for
students (with

chargers)
Learn to Code After
Ask Questions Break down tasks
Work on What You Continue to work on
Need strategies
Make timelines of
Documentation Due Tournament

DEY(
On —site Presentation

3 Seeding Rounds
Double Elimination

Alliances

Professional Development Workshop # B h lr
Page :3 © 1993 — 2024 KIPR Dt a

Practice

8:00 am - 3 Seeding Double Finals
SHLDE Rounds Elimination
4 f N
e Onsite * After 2 loses, sign up (- Alliances A
Documentation for /:\Illances' e Awards will be
) ¢ Onsite Continues immediately after
‘\ -
(After 3 seeding rounds | J UL .
go to lunch e Teams clean up pits
% « Judges will take 45 e Any help tearing
min. lunch after last down is greatly
seeding rounds appreciated by KIPR
- J staff
_ J

® Practice: teams test and calibrate robot entries on the official game boards
® Seeding rounds: teams compete against the task to score the most points
®* Double elimination (DE) rounds: teams compete head-to-head

® Alliance matches: teams eliminated in DE pair up to score points together

® Onsite documentation: 8-minute technical presentation to judges

Professional Development Workshop # B h ll’”
Page :4 © 1993 - 2024 KIPR Dt a

Navigating to Botball

Found at kipr.org -> Sign in -> Botball (top left
corner) -> Team Resources (tab) -> Team Homebase

- @

o um

About Botball®? v Schedule & Regions Y Team Resources Y Register for the Season! ¥ Sponsors
|
|

| v Botball;Team Homebase
All about
Botball

f @ ¥ O 0 &

Regions
Event Calendar

Discord
Documentation
Tournament Schedule
Announcements
Game Documents

Curriculum
Scores

Team
Homebase

Board Builds

Registrations (Traveling,
Worshops, Fall Game)
Videos

Resources and Curriculum

Professional Development Workshop
Page :5 © 1993 — 2024 KIPR

Navigating Team Home Base

Found at kipr.org -> Sign in -> Botball (top left
corner) -> Team Resources (tab) -> Team Homebase

W?mwﬁm

About Botball®? v Schedule & Regions Y Team Resources Y Register for the Season! ¥ Sponsors

f @ ¥ O 0 S

Botball Team Homebase

Find the Following: Find the Following:
Discord Period 1, 2, 3, and onsite
Ask questions Grading Rubrics

Get Answers Exemplars
Find help DEICE
Discover ideas

Professional Development Workshop B h ll’”
Page :6 © 1993 - 2024 KIPR # Dt a

Documentation

Due Dates are on the Documentation page

Period 1 Documentation:
* Part 1-0Organizing and Planning

e Part 2-Quiz
Period 2 Documentation:
e TBD

Period 3 Documentation:

* Exact requirements are TBD
Onsite Presentation:

* (8 minutes) at the regional tournament

Why do we need to do documentation?

* To reinforce the Engineering Design Process
e Points earned in Documentation factor into the overall
tournament scores!

Professional Development Workshop # B h ll’”
Page :7 © 1993 - 2024 KIPR Dt a

GCER-2024

Global Conference on Educational Robotics

2024 - Concord, North Carolina

2025 - Norman, Oklahoma

Concord, North Carolina July 27-31, * Meet and network with students
2024- Embassy Suites from around the country and

* International Botball Tournament world

Autonomous Robotics Showcase * Talks by internationally

e Aerial Botball Challenge recognized robotics experts

* International Junior Botball * Teacher, student, and peer
Challenge kipr.org reviewed track sessions

Professional Development Workshop B h ll’”
Page :8 © 1993 - 2024 KIPR # Dt a

http://www.kipr.org/gcer

Botball Team Home Base

Found at kipr.org -> Sign in -> Botball -> Team
Resources -> Team Homebase

f @ v O ©

About Botball®? ¥ Schedule & Regio v m Resources ¥ Register for the Season! ¥ Sponsors

Botball FAQ Botball Discord Server

Botball Team Homebase

Professional Development Workshop B h lr
Page :9 © 1993 - 2024 KIPR # Dt a

®* Botball Game Review ® Tournament Code Template

®* Charging KIPR Robotics Controller ® Fun with Functions

* Updating the Wombat * Moving the iRobot Create: Part 1
* Botball Overview

® Moving the iRobot Create: Part 2

®* @Getting started with the KIPR Software Suite

®* Logical Operators

* Explaining the “Hello, World!” C Program

® Color Camera

* Designing Your Own Program

®* jRobot Create Sensors

®* Moving the DemoBot with Motors

® Resources and Support

® Moving the DemoBot Servos

* Making Smarter Robots with Sensors

* Motor Position Counters

* Making a Choice

* Line-following

Professional Development Workshop # B b ll"
Page :10 © 1993 - 2024 KIPR Dt a.

Quick Links

Can you do the following?

Page

Square up..... Slide 224

CreateSlide 290

Slow down a servo.....Slide 254

Following a line.....Slide 214

Line follow with a Create.....Slide 287

Start with light.....Slide 237

Get motor position counter (drive to a certain

distance)....... Slide 177

Professional Development Workshop

:11 © 1993 - 2024 KIPR

#Botball

Ethernet port USB Ports

KIPR Robotics Controller

Wombat

Power (external battery
connection)

s

CNEM I @)

e S —
EYCECN NN, /F

(W)) e e |
Lo il =) il)

10 Digital 4 Servo 4 Motor Ports 6 Analog Button Power Switch
Sensor Ports Motor Ports (Port # 0-3) Sensor Ports
(Port#0-9) (Port#0-3) (Port #0 -5)

Professional Development Workshop # B h ll‘”
112 © 1993 — 2024 KIPR Dt a

Wombat Power

®* The KIPR Robotics Controller — Wombat, uses an external
battery pack for power.

® It will void your warranty to use a battery pack with the Wombat that
hasn’t been approved by KIPR.

® Make sure to follow the shutdown instruction on the next slide.
Failure to do so will drain your battery to the point where it can
no longer be charged. If you plug your battery into the charger
and the blue lights continue to flash then you have probably
drained your battery to the point where it cannot be charged
again. You can purchase a replacement battery from
https://www.kipr.org/

Professional Development Workshop # B h ll‘”
Page :13 © 1993 - 2024 KIPR Dt a

https://www.kipr.org/

(50

B Charging the Controller’s Battery

® For charging the controller’s battery, use only the power
supply which came with your controller,
see next slide for connections.

® |t is possible to damage the battery

by using the wrong charger or
excessive discharge!

®* The standard power pack is a lithium iron
(LiFe) battery, a safer alternative to lithium polymer

batteries. The safety rules applicable for recharging any
battery still apply:

®* Do NOT leave the battery unattended while charging.
® Charge in a cool, open area away from flammable materials.

Professional Development Workshop # B h ll‘”
Page :14 © 1993 — 2024 KIPR Dt a

Page

All connections are as follows:
 Yellow to Yellow (battery to controller)

 White small to Whlte small (charger to battery)
* Yours may vary slightly, use caution unplugging

 Black to Black (motors, servos, sensors)

Professional Development Workshop # B h ll‘”
115 © 1993 — 2024 KIPR Dt a

Wombat Powering On

®* The power switch is located on the side of the
Wombat controller next to the external battery
connection

Power (external battery
connection)

Power Switch

Professional Development Workshop # B h ll’”
Page :16 © 1993 - 2024 KIPR Dt a

Page

Wombat Power Down

®* From the Wombat Home Screen press Shutdown
* Select Yes

o Apout] shutDown

|

____ShutDown

(] Programs .

I (] Proarams
@ Flle Manager — 2) ﬁﬁi;ﬁﬁ&"ﬁgﬂ eeeeeeeeeeeeeeeeeeeeeeee
: : N - Y
&2 Motors and Sensors —_— P

1 ? & / Settings
& Settings :

:17

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

Page

Wombat Power Down

* After shutting down from the main home screen,
slide the power switch to off AND unplug the
battery; use/grab the yellow connectors, being
careful not to pull on the wires

S
” oL
Tras
RN
7. p
- . 4

Power (external battery
<€—— connection)

Power Switch

Professional Development Workshop # B h ll”
118 © 1993 — 2024 KIPR Dt a

Battery Level

* The KIPR Robotics Controller — Wombat has a color

keyed battery indicator (green-yellow is ok, red is getting
low

« AYellow LED that will flash when the battery is critically
low

 If it gets too low you may see this rainbow screen

If this happens, turn the Wombat off and replace the battery with one that is [charged

About Shut Down

] Programs

: Battery doesn’t reflect
File Manager

|] actual life
o Motors and Sensors]
[,] Yellow LED, visible only

Settings
‘é when battery is critically low

L) wierir e

(o) v =y =

Professional Development Workshop # B h lr
Page :19 © 1993 - 2024 KIPR Dt a

Update Wombats to 30.2.2

To update your Wombat Bring it to the KIPR Staff, who will follow this flowchart to
determine the correct process:

START

ontrolle

version
v30.2.2 or
igher?,

Controller
version
>=v307?

YES

Swap SD and Backup programs YES Save Save YES| Backup programs
restore via Ul e via terminal Programs Prog?rams via IUc: b;t1ton
(slide 27) (slide 22) ? ’ (slide 21)

YESI Update controller

via Ul to v30.2.2
(slide 28)

Controller
version
v30.2.1?

Swap SD with
v30.2.2

Swap SD with Reston\'/?acaTtroller
w22 (slide 27)

Readé to Eo!
» \ 4

Professional Development Workshop # B h lr
Page :20 © 1993 - 2024 KIPR Dt a

Select Backup
Click Backup

P wnh e

I About I Shut Down II

[I;I Programs

{El File Manager I

o Motors and Sensors '
+ Settings

Boot up and insert USB drive into Wo
Select Settings

ragoat
N €
. —

I Home II I Home I Back I

@Camera View |8 Languag

;1

= Channels
ar Calibrate
- Hide Ul

i
L
|
|

LiFe [
—

——

=

/
@

: 21

Professional Development Workshop

© 1993 - 2024 KIPR

#Botball

FFFFF

ssssssssss

Page

122

NOTE: If you are not comfortable with working in the terminal, ask a KIPR staff member

Insert USB drive into laptop/computer
Go to https://github.com/kipr/wombat-
os/blob/main/Backup/backup256.sh

Download “backup256.sh” to the USB drive @

Actions [Projects [0 Wiki @ Security |~ Insights 3 Settings

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

https://github.com/kipr/wombat-os/blob/main/Backup/backup256.sh
https://github.com/kipr/wombat-os/blob/main/Backup/backup256.sh

Page

Il About I Shut Down II

1. Boot up and insert USB drive into Wombat

2. Select Settings
3. Select Hide Ul

1. If you don’t see this option, select GUI

2. Check the “Hide Ul” box

4. Click Backup

[I:l Programs

B File Manager

% Motors and Sensors |
if Sgatings

e [A

Back

Home 1
‘@Cameraliew |= Network | Fullscreen: -
O Chantels |8 Language] Invert Screen
a Update | 'l Warning !!
|2t Calibrate :E Battery] Invert Screen will restart your device without a
| Hideu §® Backup

123

//
© ©)

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

1. Double click “Root Terminal”

Type “cd /media/pi”

3. Type “Is” to find USB name.
Example shows “26A4-9960”

4. Type “cd *your_usb_name*”

5. Type “sudo sh backup256.sh”

N

Page :24

[TTT;
IOWEETs

060

........

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

=l

1. Notice there are two “Invalid argument” returns
2. This is because there are
spaces after the program name

&

File Edit Tabs Help P

This is why you are not to
Use special characters or
spaces in program names

SOLUTION:
1. Click “File Manager”

Continue on next slide

Professional Development Workshop # B h lr
Page :25 © 1993 - 2024 KIPR Dt a

Click the up arrow
Double click “root”

Double click “Documents”

Double click “KISS”

Double click the User that had the misnamed project

(3)—

Example shows Default User and Ivan
Right click on misnamed project and remove space

See previous slide terminal for specific projects

&

Page

126

Fle Edit View

+ © v

Pla
2
-
t
&
=]
o

top

ces
Hor
D
w.
A
7

libwallaby-

me Folder
ki

Bookmarks Go Tofs/ Help

O A4 [home %,
YA (

1

pi

T rome

Fle Edit View Bookmarks Go Help
+ © v O 2 [mom %
Places v
M oesktop © | Documentd got2 harrogate wallaby_ve.b zoobee_laun
T in chersh
& Applications
& 7008 V0. &
o libwallaby- fle Edit View Bookmarks Go Tools Help
e © v © A [homejroot/Documents &
Places v
~ = ‘
/X Home Folder ¢
B Desktop «iss
] Wastebasket
5 Application:
& 7. 8 volu
o tibwallaby-
Fle Edit View Bookmarks Go Tools Help
¢« O v © 4 [/home/root/Documents/Kiss
Places v
2 Lbld | o
fik(HomelFolder { { { { o] Free space: 2.2 GiB (Total: 7.2 GiB)
B Desktop oefaut userfl van Junko KPR users json 3 B ©® o T deskiop1
8 Appications
& 7. 65 volu
o tibwallaby- Help

Professional Development Workshop

© 1993 - 2024 KIPR

]| Default user

#Botball

Page

127

vk wnN

Insert a flash drive into one of the USB ports on
the Wombat that has your programs on it (that
you have previously backed up)

Select “Settings”
Select “Backup”
Select “Restore”

Wait for Restore Complete Message

[l:l Programs]

[E’l File Manager]

Home

@Camera View][E Language

o Motors and Sensors [<
: =@ Channels |& Update
f Settings || 3+ Calibrate | __ Backu
: == -] |[= Hide Ul % Advpnced
®

Professional Development Workshop
© 1993 — 2024 KIPR

|+

@ —> [ehestore |

#Botball

Update Wombat via Botui

1. Select “Settings”

2. Select “Update” ‘ _ |
3. Be sure to be connected to Wi-Fi via Client Mode [T —os]

Update progress:

(slide 40) or connected by ethernet Cloning wonbat-os ©
. loning into 'wombat-os'...
4. Select “Online Update” loming Anto womst

I: About I Shut Down I
‘ o Programs ‘ m

‘E’l File Manager ‘

[@Camera View |8 Language |

[I;I Channels 6 Update : m
::: Calibrate i Backup | Select an update:
|le Advpnced

- -] = Hide Ul USB Update |

& Motors and Sensors

, Settings

[
[

® o a

Online Update |

el A

Refresh |

Professional Development Workshop # B h ll‘”
Page :28 © 1993 - 2024 KIPR Dt a

Inverting your screen

1. You can invert your screen
2. Select “Settings”
3. Select “Advanced”
4. Select “GU/”
5. Select “Invert Screen”
I About I Shut Down I I Home I
7' .I:l Programs | , . :
@/ : _ -) @Camera View |8 Language |
= File Manager : /@ Channels & Update |
% Motors and Sensors it Calibrate |[B Backup |
:’ P = Hide Ul |l Advanced | (—@
I: Home I Back I I r— l v— I
Hide Ul - Fullscreen: -
‘) ‘ @_) \ Invert Screen
@ > LEE Gl :H:‘E’ Network :] 'l Warning !!
{h Factory Tools HE’ Battery] Invert Screen will restart your device without a
prompt

Professional Development Workshop B h lr
Page :29 © 1993 - 2024 KIPR Dt a

Build the DemoBots

Build your robot using the DemoBot Building Guide

(This can be found on your desktop. Also accessible via your Botball
account: kipr.org/Botball -> Sign in -> Team Resources -> Team

Homebase)

O
0]0)|d O e
n“"

What is Botball®? v Schedule & Regions ¥ Team Resources ¥ Registera Team ‘ﬁm

Botball Challenge Res

|Gtt ng Started
Botball® Team Homebas
mmmmmmmmmmmm

*Must be signed into your Botball team account to view the Team Homebase.

Professional Development Workshop # B h ll‘”
Page :30 © 1993 - 2024 KIPR Dt a

Join Us Online!

KIPR.org
. #Botball
Like § #KISSInstitute
Follow Us
Today!

@ @botballrobotics
o /BotballRobotics

‘ @botballrobotics

@botballrobotics

Botball Overview

What and When?
GCER

Professional Development Workshop # B b ll"
Page :32 © 1993 - 2024 KIPR Dt a

What is Botball?

®* Produced by the KISS Institute for Practical Robotics (KIPR), a
non-profit organization based in Norman, OK.

®* Engages middle and high school aged students in a team-oriented
robotics competition based on national education standards.

® By designing, building, programming, and documenting robots,
students use science, technology, engineering, math, and writing
skills in a hands-on project that reinforces their learning.

Professional Development Workshop # B h lr
Page :33 © 1993 - 2024 KIPR Dt a

Botball Discord: How-To

Found at kipr.org -> Sign in -> Botball -> Team
Resources -> Team Homebase

f @ v O ©

About Botball®? ¥ Schedule & Regio v m Resources ¥ Register for the Season! ¥ Sponsors

Botball FAQ Botball Discord Server

Botball Team Homebase

Professional Development Workshop # B h lr
Page :34 © 1993 — 2024 KIPR Dt a

Botball Student Discord

What is Discord? Q

* Discord is a messaging social platform that gives
users the ability to communicate with voice calls,
video calls and messaging

H What is the Botball Student Discord? Q

* The Botball Student Discord is for Botball students
and coaches to connect with others in the activity

 The official point of contact for KIPR GAME FAQ

Professional Development Workshop # B h lr
Page :35 © 1993 - 2024 KIPR Dt a

Botball Discord: How-To

Click "Accept Invite"

Note: You may have to create a Discord account

Tim invited you to join

Botball

69 Online @ 320 Members

Accept Invite

Professional Development Workshop # B h ll’”
Page :36 © 1993 - 2024 KIPR Dt a

general

* Each Text Channel has a separate messaging
space for specific topics of conversation

* This directory is located on the left side of
the page

Professional Development Workshop # B h lr
Page :37 © 1993 - 2024 KIPR Dt a

Botball Discord: How-To

 Each Voice Channel has a separate
voice chatting space for specific
topics of conversation

* This directory is located on the left
side of the page

Professional Development Workshop # B h lr
Page :38 © 1993 - 2024 KIPR Dt a

Botball Discord: How-To

* The Official Botball FAQ section is
for asking specific questions and

viewing other questions previously
asked

 Each channel is dedicated to that
specific topic

* This directory is located on the left
side of the page

Professional Development Workshop # B h ll‘”
Page :39 © 1993 - 2024 KIPR Dt a

Botball Discord: How-To

Before asking a question in each channel,
search existing threads using keywords

from your question \

Create X

1 To ask a question, create a Thread

The Threads icon is located at the top right of the page

Professional Development Workshop # B h lr
Page :40 © 1993 — 2024 KIPR Dt a

* You can also search topics using
keywords in the search bar

* The search bar is located at the
top right of the page

Professional Development Workshop # B h lr
Page :41 © 1993 — 2024 KIPR Dt a

Getting Started with the KIPR Software Suite

What is a programming language?
How can | create new projects and files?
How can | write and compile source code?
How can | run programs on the KIPR Wombat?

Professional Development Workshop # B h ll’”
Page :42 © 1993 — 2024 KIPR Dt a

(50

=l

What is a Programming Language?

Blah! Blah!
Blah! Blah!

®* Computers only understand machine language (stream of bytes),
which computers can read and execute (run).

® Unfortunately, humans don’t speak machine language...

Professional Development Workshop # B h ll’”
Page :43 © 1993 — 2024 KIPR Dt a

1 ~ language Language

feed
{f\d - o) ¥ Transiates) EE——)
] U

®* Humans have created programming languages that allow them (humans) to
write “source code” that is easier for them (humans) to understand.

Programming r\ Machine

® Source code is compiled (translated) by a compiler (part of the KIPR Software
Suite) into machine language so that the computer can read and execute (run)
the code.

® Programming languages have funny names (C, C++, Java, Python, ...)

Professional Development Workshop # B h ll’”
Page :44 © 1993 — 2024 KIPR Dt a

Connect the Wombat to your Computer,

Smart Phone or Tablet at School

« Connect the Wombat to your Browser device via Wi-Fi

1. Turn on the Wombat with the

Disconnect
black switch on the side (after turning on, S
wait until you see your Wombat as available
. . . . KIPR
to connect to with your device Wi-Fi.
\ This should take a minute or so) A Allshore
—T— ——T—
' ' Wombat—-ffff
g Prog ra ms Version 30.1.2
N . i Copyright © 2012 - 2023
E File Manager KISS Institute for Practical Robotics
- = Network @
@: Motors and Sensors SSID: ffff-wombat
- . D[‘ I pSee All Developers] Password: 66f0cc00 K
- : ’ WiFi: 192.168.125.1
’ Settlngs i LAN: 0.0.0.0
LiFe [= LiFe I oy

2. Use the info (Wombat SSID # and Password), from the about page, to connect
via Wi-Fi.

Professional Development Workshop # B h ll‘”
Page :45 © 1993 — 2024 KIPR Dt a

Connection

®0000 AT&T LTE 1:58 PM

£ Settings Wi-Fi

Wi-Fi

~ 1500-wallaby

CHOOSE A NETWORK...

ATT2h5c5T4
ATT3jLU4Ry
CoxWiFi
DF995C
HCS

HCS - 5G
KIPR

KIPR Guest

Other...

7 % 78% W)

©

[3} [)
))

)

D) D) B
CARCARCARCRECAR SR AR S !

=]
o))

4))

Page :46

When you are connected to your Wombat,
your device may give various errors; “no
internet connection” or “connected with

limited”

This is normal. Proceed with opening a
browser and connecting to the KISS IDE.

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

Switching Wombat to Client Mode

For more advanced users, you can put your Wombat in client
mode:

1. Select “Settings”

2. Select “Advanced”

3. Select “Network”

I About I Shut Down I I Home I Home Bafk

l _ : [@Camera View |8 Language | j

B File Manager ’ /@ Channels |& Update | |= GUI & Network |
4t Calibrate |B Backup || |mFactory Tools |= Battery |
= I]

::I Programs

@ Motors and Sensors

Hide Ul & Advanced

LiFe [_ | LiFe [> LiFe [_

.
0 @

i/‘ Settings

Professional Development Workshop # B h ll‘”
Page :47 © 1993 — 2024 KIPR Dt a

Switching Wombat to Client Mode

4. Select drop down box that says “AP Mode”
5. Change selection to “Client Mode”

6. Select “Connect to...”
7
8

Select desired network, then select “Connect”
Enter password for given network, then select “Join”

I Home I Back I Home Back

g 1 Network Information : 1 Network Information

"% @ =Connect to...

: > Wifi is currently: ON : > Wifi is currently: ON

‘f Manage... ’ ‘/' Manage... ’ ,

: J SSID: ffff-wombat : J SSID: KIPR GFi

‘TOU rnament MOde' Password: 66f0cc00 tou rnament MOd{ Password: password

=3 (AP Mode - @_'Client Mode -
@ |] 192.168.125.1 |] 192.168.86.248

LiFe [= Life [S

I Home I Back I I Home I Back I

| Rinere [] (/@ Network Name: ...
© KIPR < ‘ L
» Biorite-ubi { Other...] Security: [WPA ']
- Winds of Change Password: password <
=1 | care
Chromecast6689.b,
| | ~ Join

LiFe [>

Professional Development Workshop # B h lr
Page :48 © 1993 — 2024 KIPR Dt a

(50

Loading the Starting Web Page (Wi-Fi)

=l

1. Launch a web browser such as Chrome or Firefox (Internet

Explorer will not work).
2. Copy this IP address into your browser’s address bar followed by

“” and port number 8888; e.g.,

l192.168.125.1':|8888'
1 I
IP address Port #

3. The user interface for the package will now come up in your
browser.

4. You may use a computer, tablet or even a smart phone through
Wi-Fi.

1. Optionally you may use an ethernet cable (instead of Wi-Fi).

Professional Development Workshop # B h ll‘”
Page :49 © 1993 — 2024 KIPR Dt a

Page

Connection Troubleshooting

If you have trouble connecting your Wombat via Wi-fi, try ethernet:

1.

:50

Plug ethernet cord from Wombat to ethernet switch, then an ethernet cord
from ethernet switch to computer

Ethernet port

Ethernet Switch

I: Home I
Wombat—-ffff
Version 30.1.2
.Ccpyright © 2012 - '2023 .
KISS Institute for l”\lrez:::\lgrcl:(al Robotics 19 2] 1 68] 1 2 3 . 1 2 : 8888

B SSID: ffff-wombat \ Y J \]
(See All Developers) \F;\:SF?WOM: fs;oifci(;OlZS 1 '

S —TTEEITY LAN address Port #

LiFe IR &S

Copy this LAN address into your browser’s address bar followed by “:” and port number 8888;
e.g.,

Note: this LAN address will appear when plugged into ethernet switch to computer

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

Using the KIPR Integrated Development

Environment (IDE)

. . (§] 192.168.125.1:8888 ¢ O M o
To make it easier for you to .E. o S
learn and use a programming
language, KIPR provides a - ——

web-based Software Suite
which will allow you to write
and compile source code using
the C programming language. | &=

N KISS IDE
Edit and compile programs for the device

About Settings

Display the About page }' Modify the system's settings, such as network, time,
and more.

The development environment| | & s e o
will work with almost any web

browser except Internet = 5 ==
Explorer. -

Host filesystem manager

Professional Development Workshop # B h ll’”
Page :51 © 1993 - 2024 KIPR Dt a

Creating a Project

1. Click on the KISS IDE button.

Page

Runner

192.168.125.1:8888 ¢

Runs a user program

KISS IDE
Edit and compile programs for the device

About

Settings

NOTE: The buttons might be in different locations depending on device type and screen

152

size.

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

Creating a User Folder

1. Add a new user folder by clicking the + sign in ‘Q e

the Project Explorer.

2. Name your new user folder by the student’s :
name to help organization. All of your Defauit User
different projects will go into this user folder.
*No special characters allowed in name.

+ Add Project

Create New User

User Name

Student Name

CCCCC

3. Click Create to complete.

Professional Development Workshop

®
Page :53 © 1993 - 2024 KIPR # Bntball

Creating a Project

1. Go back to Project Explorer and select the User
Name you created from the drop down. This is
the folder you created.

2. Click +Add Project. You are adding a project to Project Explorer
your folder.

v Default User
Carol ann Folder
Sarah Folder

HelloWorld

Sarah Folder

+ Add Project

Professional Development Workshop # B b ll‘”
Page :54 © 1993 — 2024 KIPR Dt a

Creating a Project

1. Give your project a descriptive name

* Note: you will have a lot of student’s projects, so consider using their first
name followed by the name of the activity.

No special characters allowed in name. ., /?S#% ~ -&* or emojis

2. Press the Create button

Create New Project

Project name
My First Project|

Programming Language

:]

Source file name

main.c

Professional Development Workshop # B h lr
Page :55 © 1993 - 2024 KIPR Dt a

1. Click the Compile button for your project and, if successful
(compilation succeeded), click Run so you can run your project to
see if it works.

File: main.c

1 #include <kipr/botball.h>
2

Compilation succeeded

Compilation succeeded

aa -

3 int main() + Add Project
4
5 printf("Hello World\n"); My First project
6 return 0;
7'} Source Files
8

[main.c

Project Explorer

Botgal Folder g + -

NOTE: When you compile, your project is automatically saved.

Page :56

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

Running Program from Robot

I T
‘ ; @ Default User/St i ’

S mustata/anaioa test & Run

= Programs s Ral/Test ~ :

g s p— it |

E‘l File M@nager

& Motors arnd Sensors

:f Setflings

Select Programs Highlight program and press run

Professional Development Workshop # B h ll‘”
Page :57 © 1993 - 2024 KIPR Dt a

Connection Issues

Your computer may disconnect from the KIPR Robotics Controller.
You will know this happens when:

You hit compile and the button Does Not turn red (nothing happens)

Project Explorer %
1 #include <kipr/wombat.h> v
2
3 int in() + Add Project
Y Complle testy two Run
5 printf("Hello World \n"); Teaty
6 tor (0,50);
E:toi (3,50); testy two
msleep (5000); Source Files Connected
9 return 0;
10 } [main.c
Compilation succeeded 8
Compilat ded &
Compile testy two Run
Copyright © 2015 KISS Insitute for Practical Robotics S N ot Co n n e cte d

Professional Development Workshop # B h lr
Page :58 © 1993 - 2024 KIPR Dt a

Starting Another Project

Note: one project = one program.

* Click the + Add Project button or click the Menu button to return
to the starting menu.

* Proceed as before.

* The Project Explorer panel will show you all of the user folder
projects and actively edited files.

aese o KIPR Software Suite x \ &

(- i) | 192.168.125.1:8888/#/apps/kiss?project=My First Project&file=main.c&cat=src c Q search

[]) (& = % >
Save main.c File Menu Project Menu Undo Redo Indent Compile My First Project Run

File: main.c

1 #include <kipr/botball.h>
2

3 int main()

4 {

5 printf("Hello World\n"); Project
6 return 0;

Source Files

[main.c

Professional Development Workshop # B h ll"
Page :59 © 1993 - 2024 KIPR Dt a

Explaining the “Hello, World!” C Program

Program flow and the main function
Programming statements and functions
Comments

Professional Development Workshop # B b ll"
Page :60 © 1993 - 2024 KIPR Dt a.

“Hello, World!”

1 #include <kipr/botball.h>

3 int main()

| |
% { | Note: We will use this template |
5 printf("Hello World\n"); | every time; we will delete lines |
6 return 0: L we don’t want, and we will ;

' add lines that we do want. '
7} | o ;
8

Professional Development Workshop # B b ll"
Page :61 © 1993 - 2024 KIPR Dt a

Program Flow and Line Numbers

File: main.c Begln
Top

1 #include <kipr/botball.h>
5 Prlnt "HeIIo, World'"
3 int main() l\/]
4| ¢ | Returno
5 printf("Hello World\n"); '
6 return 0;
7}
\4 8
Bottom

Computers read a program just like you read a book—
they read each line starting at the top and go to the bottom.

Computers can read incredibly quickly—
Millions of lines per second!

Professional Development Workshop # B h ll’”
Page :62 © 1993 - 2024 KIPR Dt a

Source Code

#include <kipr/botball.h>

1
2
3 int main()

4 {

5 printf("Hello World\n");
6 return 0;

7

8

}

This is the source code for our first C program.

Let’s look at each part of the source code.

Professional Development Workshop # B b ll‘”
Page :63 © 1993 - 2024 KIPR Dt a

The main Function

A function defines a list of actions to take.
A function is like a recipe for baking a cake.
When you call (use) the function,
the program follows the instructions and bakes the cake.

// Created on Thu January 5 2018

&«——This isthemain () function.

return ;

|
|
|
|
! printf("Hello, World!\n");
:
|

S ; When you run your program,
the main function is executed.

A C program must have
exactly onemain () function.

Professional Development Workshop # B h ll’”
Page :64 © 1993 — 2024 KIPR Dt a

Block of Code

The list of actions that the function performs is defined inside a
block of code.

// Created on Thu January 5 2018

:" 1};_1:__111}:1 i‘_i ;_ } «— Block Header _ This is a block of code.

Begin —*{ !
printf("Hello, World!\n"); :(A block of code should
, return U; ! always be preceded by

End ﬁ} I

___________________________ a block header, which is

A block is defined between a the line just before the {

beginning curly brace { and an
ending curly brace }

Professional Development Workshop # B h ll’”
Page :65 © 1993 - 2024 KIPR Dt a

Programming Statements

Inside the block of code
// Created on Thu January 5 2018 (between the { and } braces),
we write lines of code called

b mas :
int main() programming statements.

Statement #1 > 1printf ("Hello, World!\n")}; ~
Statement #2 - 'return 0; <€ Each programming statement
) is an action to be executed by

the computer (or robot)
in the order that it is listed.

There can be any number of
programming statements
within a block of code.

Professional Development Workshop # B h lr
Page :66 © 1993 - 2024 KIPR Dt a

KIPR functions reference sheet

Until you are familiar with the functions that you will be using,
use this function reference sheet as an easy reference.

Copying and pasting your own code is also very helpful.

Function Reference Guide 2020
Wombat

printf("text\n");

msleep (# milliseconds) ;

motor (port #, power);

mav(port #, velocity);

ao();

enable_servos () ;

disable_servos () ;
set_servo_position(port #, position);
wait_for_light(port #);

analog(port #); Geta 8 specified
digital (port #); Geta g f spedf

shut_down_in(time in seconds) ;

Camrer; - —

camera_open() ;
camera_close();
camera_update() ; Pulls a new ge from the camera for processing
get_object_center_x(channel #, object #); e x-axis center of a specified object on a specified channe
get _object_area();
get_object_count (channel) ;

create_connect () ;
create_disconnect() ;
create_drive_direct(l_speed, r_speed);
create_stop() ;
get_create_total_angle();
set_create_total_angle (angle) ;
get_create_lbump () :

get_create_rbump ()
get_create_lfcliff_amt()
get_create_rfcliff amt()

Printing Sensor Values
printf("left cliff Value: %d\n”,get_create lfcliff amt())//prinist
printf ("Distance Value: %d\n”,get_create_distance()):

printf(“Angle Value: %d\n”,get_create_total_angle()): prints the value fro
i el
$Hilid 405-579-609 [

Professional Development Workshop # B h lr
Page :67 © 1993 - 2024 KIPR Dt a

Page

168

Ending a Programming Statement

// Created on Thu January 5 2018

int main ()

{ :
printf ("Hello, World!\n")l;\»\ Each programming statement
-~ \N 7 . .
return 0 € ends with a semicolon ;
} (unless it is followed by a new

block of code).

This is similar to an English sentence, which ends with a period.

If an English sentence is missing a period, then it is a run-on sentence.

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

Ending the main Function

// Created on Thu January 5 2018

int main ()

{
printf ("Hello, World!'\n");

return 0;!

|
Lo o — =2

}

I

The return statement is

generally the last line before
the } brace.

Professional Development Workshop
Page :69 © 1993 — 2024 KIPR

The main function ends with a
return statement, which is a
response or answer to the
computer (or robot).

In this case, the “answer” back
to the computer is

#Botball

Page

Comments

The green text at the top of the program is called a “comment”.

I// Created on Thu January 5 2018 , Comments are helpful notes
that can be read by you or
your team—they are ignored

printf ("Hello, World!'\n"); (not read) by the computer!
return 0;

int main ()

{

Professional Development Workshop # B h ll‘”
170 © 1993 — 2024 KIPR Dt a

Text Color Highlighting

The KISS IDE highlights parts of a program to make it easier to read.
(By default, the KISS IDE colors your code and adds line numbers.)

—>#include <kipr/botball.h>
2

Comments in green\ 3 int main()

4 {
]) \\E\\ﬁi //commenting for the flow of code
® Text strings appear in red c : 'Hello World\n"):
- ?“-“t-f—& ~ '
7

”E”’),return 0;
}

9

Includes in purple

®* Keywords appear in blue —

Professional Development Workshop # B h ll"
Page :71 © 1993 - 2024 KIPR Dt a

Print Your Name

Description: Write a program for the KIPR Wombat that prints your name.

Solution:

Source Code Flowchart

y

int main()

{] [Print your name.]
// 1. Print your name.

printf ("Botguy\n") ;

// 2. End the program.
return

ik

Professional Development Workshop # B h ll’”
Page :72 © 1993 - 2024 KIPR Dt a

Designing Your Own Program

Breaking Down a Task
Pseudocode, Flowcharts, and Comments
msleep () Function
Debugging Your Program

Professional Development Workshop # B b ll°
Page :73 © 1993 - 2024 KIPR Dt a

[OO

:.’fffff Complex Tasks > Simple Subtasks

-

®* Break down the objectives (complex tasks) into smaller objectives
(simple subtasks).

®* Break down the smaller tasks into even smaller tasks.
Continue this process until each subtask can be accomplished by a
list of individual programming statements.

®* For example, the larger task might be to make a PB&J Sandwich
which has smaller tasks of getting the bread and PB&J ready and
then combining them.

Professional Development Workshop # B h ll‘”
Page :74 © 1993 — 2024 KIPR Dt a

Practice Printing

Description: Write a program for the KIPR Wombat that prints "Hello,
World!” on one line, and then prints your name on the next line.

Analysis: What is the program supposed to do?

Flowchart
Pseudocode Comments 5
1. Print “Hello, World!” // 1. print "Hello, World!" Print “Hello, World!”
2. Print your name. // 2. Print your name. \/
3. Endthe program. // 3. End the program. [Print your hame.
\/
e m e m e ——— = n Return 0
: In English, | r7 - "-"~"--~-"“=°""""""°~ .

| write a list of actions
| to solve an activity.

—————————————————

Professional Development Workshop # B h ll‘”
Page :75 © 1993 - 2024 KIPR Dt a

: r

| ! These are three different
: : ways to do this.

1

Practice Printing

Solution: Create a new project, create a new file, and enter your
pseudocode and source code in the main function.

®* Note: remember to give your project and file descriptive (unique) names!

Pseudocode

Source Code

2. Print your name.
3. End the program.

1. Print "Hello, World!")

Helps you write
the real code!

int main ()

{
printf ("Hello, World!\n");
printf ("Botguy\n") ;

return ;

Execution: Compile and run your program on the KIPR Wombat.

Page :76

Professional Development Workshop

© 1993 - 2024 KIPR

#Botball

Practice Printing

Reflection: What did you notice after you ran the program?

®* The KIPR Robotics Controller reads code and [generally] goes to the next line
faster than a blink of your eye.

®* The KIPR Robotics Controller is executing thousands of lines of code per
second!

®* To control a robot, sometimes it is helpful to wait for some duration of time
after a function has been called so that it can actually perform the task.

® To do this, we use the built-in function called msleep ()

Let’s use this!

Professional Development Workshop # B h ll‘”
Page :77 © 1993 - 2024 KIPR Dt a

Waiting for Some Time

Description: Write a program that prints "Hello, [your name]!" on
one line, waits two seconds, and then prints "Good bye." on the next
line.

Flowchart

Analysis: What is the program supposed to do?

\/

Pseudocode Comments [_print “Helo, Botguy”

1. Print “Hello, Botguy!” // 1. Print "Hello, Botguy!" e AR '
A P [,____g__y_.l |[Waitfor25econds. ;
: 2. Waitfor2seconds. // 2. wait for 2 seconds. ! | — v ______ !
3. Print “Good bye”. // 3. Print "Good bye." [print Good bye. |

4. End the program. // 4. End the program.
Return 0

New!

Professional Development Workshop # B h ll‘”
Page :78 © 1993 - 2024 KIPR Dt a

Waiting for some time

Solution: Create a new project, create a new file, and enter your
pseudocode and source code in the main function.
®* Note: remember to give your project and file descriptive (unique) names!
Source Code

int main()

{
printf ("Hello, Botguy'\n");

Pseudocode e

. Print "Hello, Botguy!"
. Wait for 2 seconds.

= WK

. Print "Good bye".
. End the program.

msleep (

)

printf ("Good bye.\n") ;

return

.
4

Execution: Compile and run your program.

Professional Development Workshop
Page :79 © 1993 — 2024 KIPR

#Botball

Waiting for Some Time

Reflection: What did you notice after you ran the program?

® Did your code work the first time you typed it in?

® Did you have any errors?

Professional Development Workshop # B h ll’”
Page :80 © 1993 - 2024 KIPR Dt a

Page

If you do not follow the rules of the programming language, then
the compiler will get confused and not be able to translate your
source code into machine code—it will say “Compile Failed!”

The Wombat will try to tell you where it thinks the error is located.

The process of trying to resolve this error is called “debugging”.

To test this, remove a ; from one of your programs and compile it.

® How about if you remove a " from one of your printf statements?

® What if you type msleep ()asMsleep ()?

Professional Development Workshop # B h ll‘”
: 81 © 1993 - 2024 KIPR Dt a

Debugging Errors

line # : col # (the error is on or before line # 6)

/home/root/Documents/KISS/Default User/hey/src/main. cx qunctlon 'main'
/home/root/Documents/KISS/Default User/hey/src/main.c:6:5: error: expected ';' before 'return’

return 0; A

s > “ expected ; ” (semicolon)

1 #include <kipr/botball.h> I
2 . EE S e e e e ST S S S SSSmsssmmmm=—- 1
3 int main() ' When there is an error, you can ignore the first error line :
4 { .)) ! (“In function ‘main’”)and read the next to see what |
Z i::::i(c?euo HorLdMT) € = = = = = the first error is. If you have a lot of errors, start fixing !
7/} | them from the top going down. Fix one or two and !
8 | recompile. :
Lo ——————————_—_—

e = —

Compilation Failed

/home/root/Documents/KISS/Default User/hey/src/main.c: In function 'main':
/home/root/Documents/KISS/Default User/hey/src/main.c:6:5: error: expected ';' before 'return'’

Professional Development Workshop # B b ll°
Page :82 © 1993 - 2024 KIPR Dt a

Moving the DemoBot with Motors

Plugging in motors (ports and direction)
motor functions

Professional Development Workshop # B b ll‘”
Page :83 © 1993 - 2024 KIPR Dt a

Check the Robot’s Motor Ports

=l

® To program your robot to move, you need to know
which motor ports your motors are plugged into.

®* Computer scientists tend to start counting at O, so the
four motor ports are numbered 0, 1, 2, and 3.

Professional Development Workshop # B h ll‘”
Page :84 © 1993 — 2024 KIPR Dt a

Motor Port Labels are
on the Case

Motor Port Labels 0, 2 are
also on the board

Professional Development Workshop B h ll‘”
Page :85 © 1993 - 2024 KIPR # Dt a

Plugging in Motors

®* Motors have red wire and a black wire with a two-prong plug.
®* The Wombat has 4 motor ports numbered 0 & 1 on left, and 2 & 3 on right.

®* When a port is powered (receiving motor commands), it has a light that glows
green for one direction and red for the other direction.

® Plug orientation order determines motor direction.
® By convention, green is forward (+) and red is reverse (-)

e Unless you plug in the motors “backwards”.

Drive motors have
a two-prong plug.

Professional Development Workshop # B h lr
Page :86 © 1993 - 2024 KIPR Dt a

Motor Plugged into Port O (right wheel on DemoBot)

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a-

Motor Direction

You want your motors going in the same direction;
otherwise, your robot will go in circles!

® Motors have a red wire and a black wire with a two-prong plug.

® You can plug these in two different ways:
® One direction is clockwise, and the other direction is counterclockwise.
® The red and black wires help determine motor direction.

12 2 1

Professional Development Workshop # B h ll‘”
Page :88 © 1993 - 2024 KIPR Dt a

Motor Port and Direction Check

There is an easy way to check this!

®* Manually rotate the tire, and you will see an LED light up below the motor port
(the port # is labeled on the board).

® |f the LED is green, it is going forward (+).
® |f the LED is red, it is going reverse (-).

forward

backward
® Use this trick to check the port #s and direction of your motors.

® |f one is red and the other is green,
turn one motor plug 180° and plug it back in.

® The lights should both be green if the robot is moving forward.

Professional Development Workshop # B h lr
Page :89 © 1993 - 2024 KIPR Dt a

Use the Motor Widget

IS ST | ST

(] Programs

: & Motors 2 Sensor Graph

B File Manager ') :
: % Servos B Sensor List

&; Motors and Sensors ' <

: : @ Create 3 @ Camera

& Settings ~ -

Motor 0 -IPosition: 0
- Stop |

? » Forward |
«Backward |

a:Power |*Velocity

Professional Development Workshop # B h lr’
Page :90 © 1993 - 2024 KIPR Dt a

Common Motor Functions

There are several functions for motors.

~------------= We will begin with motox ()
: Motor port# |

; (between 0 and 3)

motor (U,) 7 € L EE LR E LR '
| A positive number should drive
the motor forward; if not,
rotate the motor plug 180°.

// Turns on motor port #0 at 100% power.
// Power should be between -100% and 100%.

|

|

|

|

|

|

|

. I
msleep () ; A nggatlve number should !
drive the motor reverse. I

|

|

If two drive motors are plugged |
in in opposite directions from |
each other, then the robot will !
go in a circle. I

|

ao();

I
I
|
1
I
I
|
1
// Wait for the specified amount of time. |
|
:
I
|
1
// Turn off all of the motors. !

|

Professional Development Workshop # B h ll’”
Page :91 © 1993 - 2024 KIPR Dt a

Moving the DemoBot

Description: Write a program that drives the DemoBot forward at
80% power for two seconds, and then stops.

Analysis: What is the program supposed to do? Flowchart
Pseudocode Comments , \/

Drive forward at 80%.
1. Drive forward at 80%.// 1. prive forward at 80%. y S
2 Wait for 2 Seconds. // 2. Wait for 2 seconds. [Wait for 2 seconds.
3. Stop motors. // 3. Stop motors. N
4. End the program. // 4. End the program. [e]

Return 0

Professional Development Workshop # B h ll‘”
Page :92 © 1993 - 2024 KIPR Dt a

Moving the DemoBot

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.
®* Note: remember to give your project and file descriptive, unigue names!
Source Code

Pt #include <kipr/botball.h>
Psuedocode (Comments) .-~ int main ()
{
1. Drive forward at 80%.
. motor (U,) ;
2. Wait for 2 seconds. motor () ; /€ 4
’ ’ orwar
3. Stop motors. msleep () ;
4. End the program.
ao();
\‘~\ return 0;
T~ }

Execution: Compile and run your program.

Professional Development Workshop
Page :93 © 1993 — 2024 KIPR

#Botball

Moving the DemoBot

Reflection: What did you notice after you ran the program?

Did the DemoBot move forward?

® Positive (+) numbers should move the motors in a clockwise direction
(forward); if not, rotate the motor plug 180° where it plugs into the
Wombat.

® |f your robot moves in a circle, one motor is either not moving (is it plugged
in?) or they are moving in opposite directions (rotate the motor plug 180°).

®* Did the DemoBot drive straight?

®* How could you adjust the code to make the robot drive straight?
®* How can you make the robot drive backwards?

®* How can you make the robot turn left or right?

Professional Development Workshop # B h ll‘”
Page :94 © 1993 — 2024 KIPR Dt a

Robot Driving Hints

Remember your # line:
positive numbers (+) go forward and negative numbers (-) go in reverse.

< Reverse Forward >

L | | 1 | | |
N I B N B B
0 1 2 3 4 5 6 7

AN
/

||
1
9 10

© —t—

Driving straight: it is surprisingly difficult to drive in a straight line...
Problem: Motors are not exactly the same. :-.; _d_ TTTTTTTTY
Problem: The tires might not be aligned perfectly. , And many, many

) i 1 other reasons...
Problem: One tire has more resistance. e e e ;

Solution: You can adjust this by slowing down or speeding up the motors.

Making turns:
® Solution: Have one wheel go faster or slower than the other.
® Solution: Have one wheel move while the other one is stopped.

® Solution: Have one wheel move forward and the other wheel move in reverse
(friction is less of a factor when both wheels are moving).

Professional Development Workshop # B h ll‘”
Page :95 © 1993 - 2024 KIPR Dt a

More Motor functions

motor (0,) ;
// Turns on motor port #0 at 100% power.
® s great for turning gears or winding up string on a pulley.
® Is not so great for driving robots as it is dependent on battery charge.

mav (0,) ;
// Move motor on port #0 at 800 ticks/sec.
* |s great for driving robots and not as dependent on battery charge.

® Greater precision of motor control (think of this as being like cruise control in a car).
®* Mustusewait for milliseconds function correctly.

mrp (0, ’) ;

// Move motor on port #0 forward 3000 ticks at 800 ticks/sec.
®* Provides the most precise level of motor control.
®* Most complicated to use (must do a lot of calculations to move correctly).

Professional Development Workshop # B h ll’”
Page :96 © 1993 - 2024 KIPR Dt a

Motor Position Counter

Motor position counter functions
Ticks and revolutions

Professional Development Workshop # B b ll‘”
Page :97 © 1993 - 2024 KIPR Dt a

Motor Position Counter

Each motor used by the DemoBot has a built-in motor position counter,
which you can use to calculate the distance traveled by the robot!

Motor Port #

/ (0 to 3) \

get motor position_ counter (0) — OR — gmpc ()
// Tells us the number of ticks the motor on port #0 has rotated.

Motor Port #
/ (0to3) \
clear motor position counter (0) ; — OR — cmpc (0) ;

// Resets the tick counter to 0 for the motor on port #0.

Similar to how a clock is divided into
60-second intervals (ticks).

® Botball motors have approximately 1800 ticks per revolution.
® Use wheel circumference divided by 1800 to calculate distance!

®* The motor position is measured in “ticks”.

Professional Development Workshop # B h lr
Page :98 © 1993 - 2024 KIPR Dt a

Seeing Counters on Screen

You can access the Motors from the Motors and Sensors section

* This is very helpful to test your motors and see the actual
motor position counters “in action”

o T sweoon] o)

’I:I Programs

. & Motors 2 Sensor Graph
B File Manager »

. : % Servos \ B8 Sensor List
'¢: Motors and Sensors ‘ =

: : @ Create3 |@ Camera
e Settings ‘- -

Professional Development Workshop # B h lr
Page :99 © 1993 - 2024 KIPR Dt a

Select motor port (allows you to To clear (reset) the counter
select the motor of your choice)

Motor Position
/ in “ticks”
Position: 0

" Stop ‘ Use your hand to

: ‘ rotate the robot’s
wheel (plugged into

. port 0) and watch the

0 position counter.

: What happens if you
gy ‘ »> M
Power |*Velocit turn the wheel in the

opposite direction?

Motor 0 4 .

You can also place your robot on a surface and roll it forward
to measure the # ticks from a starting position to another
location or object

Professional Development Workshop # B h lr
Page :100 © 1993 - 2024 KIPR Dt a

Drive to a Specific Point

You can also place your robot on a surface and roll it forward to measure the # ticks
from a starting position to another location or object.

Place the robot in the start box of KIPR Mat A and using the motors/widget screen:
1) reset the left motor counter

2) manually push the robot forward to circle 9 on the mat
3) visually record/remember the tick count

Description: Write your program to drive the DemoBot forward that many “ticks”
and then stop.

Pseudocode

Generate it!

Professional Development Workshop # B h lr
Page :101 © 1993 - 2024 KIPR Dt a

Drive to a Specific Point

Solution:
Source Code
ll
1
/ int main()
Pseudocode K
int distance = ; // in ticks
1. Reset motor position counter. cmpc (0) ;
2. Loop: Is counter < my
distance? while (gmpc(0) < distance)
2.1. Drive forward. t motor (0,) ;
3. Stop motors. motor (2,) ;
4. End the program. }
ao();
return
V|
\
\
\

Professional Development Workshop # B h ll’”
Page :102 © 1993 - 2024 KIPR Dt a

Drive to a Specific Point

Reflection: What did you notice after you ran the program?

®* How far did the robot travel? Was it always the same (you tested it more than
once, right)?

®* Your robot most likely went FURTHER than you programmed it to (check the motors screen
after it stops to see the actual final tick count). Why? Hint: inertia

®* Change your loop so that it actually goes to “distance - (actual - desired)”:

while (gmpc(0) < distance - (4832 - distance))

®* How could you modify your program to travel a specific distance in millimeters?
(Hint: Use wheel circumference (in mm) divided by 1800 to calculate number of mm
per tick!)

Professional Development Workshop # B h ll‘”
Page :103 © 1993 - 2024 KIPR Dt a

Drive to a Specific Point + Backup

Description: Write your program to drive the DemoBot forward to a specific point
and then back up to where you started.

Pseudocode Comments

1. Drive forward. // 1. Drive forward.

2. Stop at specific distance // 2. Loop: Is motor position at specific count?
3. Drive backwards. // 3. Drive Backwards to specific distance.

4. Stop at starting point. // 4. End the program.

Professional Development Workshop # B h ll’”
Page :104 © 1993 — 2024 KIPR Dt a

Drive to a Specific Point + Backup

Solution:

int main()

{

int distance = ; // in ticks

cmpc (0) ;
while (gmpc(0) < distance)
{

motor (0,) ;
motor (2,) ;
}
ao();
msleep (2000) ; // see it stop?

Now back up to | while (gmpc(0) > 0)
position (tick count 0). {

Note: clear counter not
needed this time }

motor (0, -50);
motor (2, -50);

ao();

return

Professional Development Workshop # B h ll’”
Page :105 © 1993 - 2024 KIPR Dt a

[Bonus] Drive Straight!

Description: Write a program for the KIPR Robotics Controller that drives
the DemoBot straight for 14000 ticks by adjusting the right motor power so
that the position of the left motor is the same (or close) to the right.

Analysis: How can you adjust the left motor’s position?

Pseudocode

1. Clear both motor counters
2. Loop: If total distance < 14000
Move left motor 75% power
If: Right is behind left
speed up right
Else:
slow down right
3. Stop motors
4. End the program

Professional Development Workshop # B h ll‘”
Page :106 © 1993 - 2024 KIPR Dt a

Solution:

Pseudocode

Drive Straight!

Source Code

;| int main()
Il o

cmpc (U) ;
I} cmpe (°) ;

1. Clear both motor counters.
Loop: check left position
power left motor at 75%.
If: slower
right motor at 100%
Else: faster
right motor at 50%
3. Stop motors.
4. End the program.

while (gmpc (2) <)
{

motor (3,)

if (gmpc(0) < gmpc(?))
{
motor (0,)
}
else
{
motor (0,) ;

}

Page :107

}
\ ao();

\ return

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

Drive Straight

Reflection: What did you notice after you ran the program?

® Did the robot go straighter than in the previous program?

®* How could you use this technique whenever you wanted to drive straight?
(Hint: Consider writing a function with an argument for the distance.)

®* How could you modify your program to go straight at different speeds?

Professional Development Workshop # B h lr
Page :108 © 1993 - 2024 KIPR Dt a

Other motor functions

Move At Velocity: mav (0, \);
: Motor Port# ! 1 Velocity (in ticks per second) !
| (between0and3), ' between -1000 (reverse) :
_____ x_ T and 1000 (forward) |
Move Relative Position: mrp (0, ,) ;

r e . a. !
i Motor Position (in ticks); |
1 ~1000 ticks = 1 tire revolution !

o - e - e e e e e o e e e .

J
Professional Development Workshop # B h ll’”
Page :109 © 1993 - 2024 KIPR Dt a

Move At Velocity

Description: Write a program for the KIPR Link that drives the
DemoBot forward at 1000 ticks per second for 3 seconds, then in
reverse at 1000 ticks per second for 3 second, then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Drive forward at 1000 ticks/sec. // 1. Drive forward at 1000 ticks/sec.
2. Wait for 3 seconds. // 2. Wait for 3 seconds.

3. Drive reverse at 1000 ticks/sec. // 3. Drive reverse at 1000 ticks/sec.
4. Wait for 3 seconds. // 4. Wait for 3 seconds.

5. Stop motors. // 5. Stop motors.

6. Endthe program. // 6. End the program.

Professional Development Workshop # B h ll‘”
Page :110 © 1993 - 2024 KIPR Dt a

= Move At Velocity

=l

Analysis:

,,
o
=

[Drive forward at 1000 ticks/sec.

\/

[Wait for 3 seconds.]

\/

[Drive reverse at 1000 ticks/sec.

\/

[Wait for 3 seconds.

\/

[Stop motors.]

Return 0

Professional Development Workshop # B h lr
Page :111 © 1993 - 2024 KIPR Dt a

Solution:

Source Code

int main()

{
// 1. Drive forward at 1000 ticks/sec.

Pseudocode (Comments)

mav (0,
mav (=3,

) ;
) ;

int main ()

{

//
//
//
//
//
//

o U1l WM PR

. Drive forward at 1000 ticks/sec.
. Wait for 3 seconds.
. Drive reverse at 1000 ticks/sec.
. Wait for 3 seconds.
. Stop motors.

. End the program.

// 2. Wait for 3 seconds.
wait for duration(?);

// 3. Drive reverse at 1000 ticks/sec.
mav (0,)
mav (=,)

// 4. Wait for 3 seconds.
wait for duration(?);

// 5. Stop motors.
ao();

// 6. End the program.
return

Execution: Compile and run your program on the KIPR Link.

Page

$112

Professional Development Workshop
© 1993 — 2024 KIPR

#Bothall

Precision Turning

Description: Write a program that turns left 90 degrees and then turns right
90 degrees using motor position counter.

Hint: Remember how we manually moved our robots to find the correct position, and
that inertia needs to be accounted for...

Pseudocode
1. Turn left 90 degrees.

2. Stop
3. Turnright 90 degrees.
4. Stop at same orientation as start.

Start “small” (try to accomplish the first turn before adding in / working on the second one)

Professional Development Workshop # B h lr
Page :113 © 1993 - 2024 KIPR Dt a

Moving the DemoBot Servos

Plugging in servos (ports)
enable servos and disable servos functions

set servo position function

Professional Development Workshop # B b ll"
Page :114 © 1993 — 2024 KIPR Dt a.

* A servo motor (or servo for short) is a motor that rotates to a specified
position between ~0° and ~180°.

® Servos are great for raising an arm or closing a claw to grab something.

® Servo motors look very similar to non-servo motors, but there are differences...
® A servo has three wires (orange, red, and brown) and a black plastic plug.
® A non-servo motor has two gray wires and a two-prong plug.

T

Micro servo

Large servo

Professional Development Workshop # B h ll‘”
Page :115 © 1993 - 2024 KIPR Dt a

i oo Comroterseopors

Servo Port Labels are on the board

Professional Development Workshop # B h ll‘”
Page :116 © 1993 - 2024 KIPR Dt a

Plugging in Servos

®* The KIPR Robotics Controller has 4 servo ports numbered 0 through 3.
® Note that the orientation of the wires is very important:
® (S) for the orange (signal) wire, which regulates servo position
e Closest to the screen (orange “up”, brown “down”)
® (+) for the red (power) wire
® (-) for the brown (ground) wire (“the ground is down, down is negative”)

(S) signal wire
(+) power wire
(=) ground wire

NOTICE:
orientation when
plugging in the
servos is very
important

Professional Development Workshop # B h ll‘”
Page :117 © 1993 - 2024 KIPR Dt a

% Plugged in Servos

® One servo motor is plugged into Port 0

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

Servo Positions

®* Think of a servo like a protractor...

® Angles in the ~180° range of motion (between ~0° and ~180°) are divided
into 2048 servo positions.

® These 2048 positions range from 0 to 2047, but due to internal mechanical
hard stop variability you should use ~150 to ~1900

(remember: computer scientists start counting with 0, not 1).
® This allows for greater precision when setting a position
(you have ~2048 different positions to choose from instead of just 180).
oy . 1024
®* The default position is 1024

(centered), however you
should still use caution
when setting up
initial position.

3
° g
Professional Development Workshop # B h ll‘”
Page :119 © 1993 - 2024 KIPR Dt a

S T S

(] Programs

: & Motors 2 Sensor Graph
B File Manager : .

: % Servos B Sensor List
&; Motors and Sensors ' <

: - @ Create 3 @ Camera

+ Settings - -

Port 1
Port 2
Port 3

® Enable

n Servos
1024
LiFe IR o

Port O
Professional Development Workshop # B h lr’
Page :120 © 1993 - 2024 KIPR Dt a

Testing Servos with the Widget

celect the

servo port

Servos

- Port @
G ~ Portl

- Port 2
Port 3

The current il ® EFnable < ° Enable
servo position ' e~ Servos

1024

Professional Development Workshop # B h lr
Page :121 © 1993 - 2024 KIPR Dt a

Testing Servos with the Widget

Use your finger
to move the dial.

I Home I Back I I Home I Back I

Servos Servos
- Port0 | - Port0 |
| Portl | | Portl |
- Port2 | - Port2 |
| Port3 | | Port3 |
[® Dlsable] ™ ® Dlsable }
Servo @ 537 Servo @ 608 Servo @ 1506

When you are

Do not push a servo beyond its limits finished disable

(less than ~150 or more than ~1900). (turn off) the Servo
This can burn out the servo motor!

Professional Development Workshop # B h lr
Page :122 © 1993 - 2024 KIPR Dt a

« The Servo motor only has a range of motion of (rotates) ~180
degrees, but you cannot see by looking at the motor where this
range of motion is located in relation to your robot

« Using the Servo Widget screen, enable the servo on your robot.
When you enable it, it will go to 1024. You can unscrew the servo
horn on your arm or claw and place it in the center of the rotatlon if it 1024

is not already in the correct position

ol

Professional Development Workshop

. N ®
Page :123 © 1993 - 2024 KIPR # BDthall

Page

Servo Functions

To help save power, servo ports by default are not active until they are
enabled.

Functions are provided for enabling or disabling all servo ports.
A function is also provided for setting the position of an individual servo.

enable servos();, // Enable (turn on) all servo ports.
set servo position (U,); // set servo on port #0 to position 925.
disable servos();, // Disable (turn off) all servo ports.

Note: it takes the servo TIME to move to a position so if you set it to another position
without giving it TIME the CODE runs very fast and does not wait for the servo to move

You can “preset” a servo position by calling set _servo position() before calling
enable servos (). This will make the servo move towards this position immediately
upon calling enable_servos().

Professional Development Workshop # B h ll‘”
1124 © 1993 — 2024 KIPR Dt a

Using Servo Functions

Example:

int main()

{

enable_servos();

set _servo position (0,),
msleep (),

set _servo position (0,),
msleep (),

set _servo position (0,),
msleep (),

disable_ servos();
return ;

(Note the use, and placement, of msleep to give the servo time to move to each new position)

Professional Development Workshop # B h ll’”
Page :125 © 1993 - 2024 KIPR Dt a

Wave the Servo Arm

Description: Write a program for the KIPR Robotics Controller that

waves the DemoBot servo arm up and down.

®* Remember to enable the servos at the beginning of your program,
and disable the servos at the end of your program!

®* Warning: The arm mounted on your DemoBot prevents the servo from freely
rotating to all possible positions (it will run into the KIPR Wombat controller or

the chassis of the robot)!
® Do not keep trying to move a servo to a position it cannot reach, as this can burn out the servo

and also consume a lot of power from your robot.
® Use the Servo screen to determine the limits of the DemoBot arm, write these numbers down,

and then use these numbers in your code.

RGOSR R0 1 ¥ |
lL Home]t Back) il A s el ;";J
4 Servos
‘e ienanuii
(e Pota]
[[- Disable] O
Ehs7%
Professional Development Worksho ®
© 1993 - 2824 KIPR i # BDthall

Page :126

Wave the Servo Arm

Description: Write a program for the KIPR Robotics Controller that
waves the DemoBot servo arm up and down. Advanced: Write a
function that does one wave. Call it from your main function

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Enable servos. // 1. Enable servos.

2. Move servo to up. // 2. Move servo to UP.
3. Wait for 3 seconds. // 3. Wait for 3 seconds.
4. Move servo to down. // 4. Move servo to DOWN.
5. Wait for 3 seconds. // 5. Wait for 3 seconds.
6. Disable servos. // 6. Disable servos.

7. Endthe program. // 7. End the program.

Professional Development Workshop # B h lr
Page :127 © 1993 - 2024 KIPR Dt a

(50

=l

Analysis:

Wave the Servo Arm

[Move servo to Your UP limit.]

[Wait for 3 seconds.]

G

[Move servo to Your DOWN limit.]

<

[Wait for 3 seconds.]

.

[Disable servos.]

Return 0

Commenting Within your Program

int main Make your comments after the first

{ / curly bracket and before the printf

// arm = —— Arm is plugged into servo port 0
/ / down = 400 s Arm down position is 400

// up = 1230 e —prm up position is 1230
printf ("Wave Servo Exercise\n");
return 0O;

This (keeping track of your ports, positions, etc) could also be done in a
notebook, but what if you misplace that notebook?

Professional Development Workshop # B h ll’”
Page :129 © 1993 - 2024 KIPR Dt a

Variables

Some reasons to use a variable:

1.You don’t have to remember which value is a certain servo
position — the computer remembers for you

2.1t makes your program easier to read and understand
3. Makes it easier to debug your program

4.You can do computation and store results in variables

Professional Development Workshop # B h lr
Page :130 © 1993 - 2024 KIPR Dt a

Variables

® Avariable is a named container that stores a type of value
A variable has the following three components:
a. the type of data it stores (holds),

a b
b. the name, and C Use int as your
c. thevalue it is currently storing. ¢ ¢ data type if you want
: to store whole
int arm up, numbers (integers)
arm up = ;

* Visualize/think of a variable like a storage space that holds a value
with a name on it...

® Servo “up” position arm up 1230
® Servo “down” position -
* Etc arm down 400

Professional Development Workshop # B h ll‘”
Page :131 © 1993 - 2024 KIPR Dt a

Variable Names

Each variable is given a unigue name so we can identify it...

® Variable names can be almost anything you would like.
® Variable names can contain letters, numbers, and underscores (“ ”).

® Variable names cannot begin with a number.
® Variable names should be meaningful and not generic like “x”

An Example:

int arm up; // variable "declaration"
arm up = ; // variable "initialization"
You can do the declaration and initialization at the same time
int arm up = ;

Professional Development Workshop # B h ll‘”
Page :132 © 1993 - 2024 KIPR Dt a

Working with Variables

1. Declaring a variable:

int arm up;
What is int?

2. Initializing/setting a variable: A

means that the variable arm up

arm up = . will have an integer (whole
— number) value.

2. Calling a variable:

See the Team Homebase resources for more
arm up information on data types

Professional Development Workshop # B h lr
Page :133 © 1993 - 2024 KIPR Dt a

Using Variable for Drive Motors

1. Variable declarations should go inside a block of code (i.e., inside the { })
immediately after the starting curly brace (i.e., {) and before any other code.

Page

int main ()

{
/I left =3

/[l right=10

printf("Drive and turn\n");
motor(3,);

motor(0,);

msleep();

motor(=, -50);

motor(0, 50);

msleep(500);

return O;

:134

int main ()

{
int left = ;
int right = 0;

Remove the forward printf("Drive and turn\n");

slashes from your

comments, add int motor(left,);
for the data type and motor(right);
since it is now code msleep();

add the semicolon

motor(left, -50);
motor(right, 50);
msleep(500);

return O;

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

Using Variables for Servo Motors

1. Variable declarations generally go inside a block of code (i.e., inside the { }),
after the starting curly brace (i.e., {) and before any other code.

int main () int main ()
{ {
/I 'arm port = 0 int arm_port = 0;
/l arm up = 1230 intarm_up = :
_ Remove the . P ’
/f arm down = 400 forward slashes int arm_down = !

from your

printf("Wave servo\n"); comments. add

printf("Wave servo\n");

enable_servosl().; int for the data enable_servos();
set_servo_position(O,); | type and since it set_servo_position(arm_port, arm_up);
msleep(); IS now coge add msleep();
set_servo_position(0,400); | the semicolon set_servo_position(arm_port, arm_down);
msleep(500); msleep(500); - B
return U; return 0;

} }

How many *potential* lines of code have to change if the arm servo is switched to port 3?

Professional Development Workshop # B h lr
Page :135 © 1993 - 2024 KIPR Dt a

Slowing Down A Servo

int main ()

Move the Servo Arm Using a Loop {
1. Set counter to 200. intcounter = ;
2. Set servo position to counter. set_servo position(0, counter);
3. Enable servos. enable_servos() ;
4. Loop:ls counter < 1800? while (counter <)
Wait for 0.1 seconds. {
Add 100 to counter. msleep () ;
Set servo position to counter. counter = counter + ;
5. Disable servos. set_servo position(0, counter);
6. End the program. }
msleep () ;
disable_servos() ;
returnO;

}

Professional Development Workshop # B h ll’”
Page :136 © 1993 - 2024 KIPR Dt a

More Variables and Functions with
Arguments

Data types
Creating and setting a variable
Variable arithmetic
Functions with arguments and return values

Professional Development Workshop # B b ll°
Page :137 © 1993 - 2024 KIPR Dt a

Variables (Quick Recap)

You can set the value of an int variable to any integer you choose
and change it when you need in the code.

Note that a single equal sign (=) means is assigned (sometimes it is
called the “assignment operator”).

\
counter 3 “visualize”
int counter; the variable
]]] storage
int ticks; ticks ?7?) spaces
SO counter = 3; means “counter is assigned 3”.
And ticks = *(/ circumferenceMM); means

“ticks is assigned 2000 times 1400.0 divided by circumference (in
mm)” (used to calculate how many ticks needed to travel ~2meters).

Professional Development Workshop # B h ll‘”
Page :138 © 1993 - 2024 KIPR Dt a

Move the Servo Arm Using a Loop

Description: Write a program for the KIPR Robotics Controller that moves
the DemoBot servo arm from position 200 to 1800 in increments of 100.
Remember to enable the servos at the beginning of your program, and
disable the servos at the end of your program!

Analysis: What is the program supposed to do?

Pseudocode:
1. Set counter to 200.
2. Set servo position to counter.
3. Enable servos.
4. Loop: Is counter < 18007?
Wait for 0.1 seconds.
Add 100 to counter.
Set servo position to counter.
5. Disable servos.
6. End the program.

Professional Development Workshop # B h ll‘”
Page :139 © 1993 - 2024 KIPR Dt a

(50

Move the Servo Arm Using a Loop

=l
Analysis: Flowchart

Set counter to 200.

N7

Set servo position to counter.

2

Enable servos.

Is counter <
1800
NO N YES

Wait for 100 milliseconds.

N/

Add 100 to counter.

Set servo position to counter. /

Kﬁ[Disable servos.
N/

Return 0

& #Botball

Solution:

Pseudocode

Source Code

5
6

. Set counter to 200.
. Set servo position to counter.
. Enable servos.
. Loop: Is counter < 1800?

Wait for 0.1 seconds.

Add 100 to counter.

Set servo position to counter.
. Disable servos.
. End the program.

Page

:141

int main()

{ int counter = ;
set servo position((U, counter);
enable servos();
while (counter <)

{

msleep (),
counter = counter + ;

set servo position(0U, counter);
}
msleep (),

disable servos() ;

return ;

Making Smarter Robots with Sensors

analog () and digital () sensors
wait for light () function

Professional Development Workshop # B b ll"
Page :143 © 1993 — 2024 KIPR Dt a

®* You might have realized how difficult it is to be
consistent with just “driving blind”.

®* By adding sensors to our robots, we can allow them to

detect things in their environment and make decisions
about them!

® Robot sensors are like human senses!
® \What senses does a human have?
® \What sensors should a robot have?

Professional Development Workshop # B h ll‘”
Page :144 © 1993 — 2024 KIPR Dt a

Analog Sensors

Range of values:

0 to 4095

® Ports:0to5

® Sensors:

Page :145

Function: analog (port #)

Light
Rangefinder
Small reflectance
Large reflectance

Slide sensor

Digital Sensors
® Range of values:

0 (not pressed) or 1 (pressed)

® Ports:0to9

Function: digital (port #)

® Sensors:
® |arge touch
® Small touch

® | ever touch

| Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

(50

Remember Your Sensor Functions

=l

You call for the analog sensor value with a function
* You have 6 analog ports (0 through 5)

analog (Port#) analog (1)

You call for the digital sensor value with a function
* You have 10 digital ports (0 through 9)

digital (Port#) digital (8)

NOTE: when you call these functions they “read the sensor” at that
instant in time and return a single INTEGER value into the “code”
where they were called.

Professional Development Workshop # B h ll‘”
Page :146 © 1993 — 2024 KIPR Dt a

Sensor Plug
Orientation

IO | -
(mowEw s e s

Digital Sensors Analog Sensors
Ports#0to 9 Ports#0to 5

Professional Development Workshop # B h lr
Page :147 © 1993 — 2024 KIPR Dt a

Detecting Touch

There are many digital sensors in your kit that can detect touch...

Large Touch Small Touch Lever Touch

Professional Development Workshop # B h ll‘”
Page :148 © 1993 — 2024 KIPR Dt a

Professional Development Workshop # B th ll’”
Page :149 © 1993 — 2024 KIPR D a

,’ ||u|\|!

- W e
= y

AL e

[mm =i s ."".-.‘.T‘; -
|mwwweme

\ Sepsor p.Iug Close-up of sensor
\ orientation plug orientation
\
\
N S
P S
[Plugyour
' touch sensor |
: into digital
port0 |
\\ Y

- e o o = .

Professional Development Workshop # B h ll‘”
Page :150 © 1993 - 2024 KIPR Dt a

Reading Sensor Values

from the Robot

You can access the Sensor Values from the Sensor List on your KIPR
Robotics Controller

* This is very helpful to get readings from all of the sensors you
are using, and then you can then use the values in your code

—r——rrr— | e——

"I:I Programs
: & Motors 2 Sensor Graph
‘@ File Manager » .
: : % Servos B Sensor List
& Motors and Sensors ' A
: - : & Create 3 @) Camera
"/' Settings | " ey

m A l 1

I
f et c el T I

Professional Development Workshop # B h lr’
Page :151 © 1993 - 2024 KIPR Dt a

Page

1152

Reading Sensor Values

from the Robot

. Home 1 Back '

Analoda Sensor 0
Analoa Sensor 1
Analoa Sensor 2
Analoda Sensor 3
Analoa Sensor 4
Analoda Sensor 5
Diaital Sensor 0
Diaital Sensor 1
Diaital Sensor 2
Diaital Sensor 3
Diaital Sensor 4
Diaital Sensor 5
Diaital Sensor 6
Diaital Sensor 7
Diaital Sensor 8
Diaital Sensor 9
Accelerometer X

FNFHON
OWWNOOO
U1RONON

A
|

WOOOOOOOOOOFHFHHHH

LiFe B

KO

Scroll down to the digital sensor and
read the value when your touch sensor
is pressed and when it is not pressed

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

Page

Use the Sensor Graph

o T sweoon] o

(] Programs |

: & Motors =Sensor Graph

B File Manager ‘ " . '
: % Servos HB Sensor List

&: Motors and Sensors : e

: : @ Create 3 Hi Camera

& Settings ' -

LiFe [

)

:153

'Analog 0

-lAnalog 4 -

4032

\/—T—\/ﬁﬁ
W

2673

Professional Development Workshop

© 1993 - 2024 KIPR

#Botball

Introduction to while loops

Program flow control with sensor driven loops
while and Boolean operators

Professional Development Workshop # B b ll‘”
Page :154 © 1993 — 2024 KIPR Dt a

(50

Program Flow Control with Loops

=l

* What if we want to repeat the same “item/action” over and over

(and over and over)?
® For example, checking to see if a touch sensor has been pressed.

®* We can do this using a loop, which controls the flow of the
program by repeating a block of code.

Professional Development Workshop # B h lr
Page :155 © 1993 - 2024 KIPR Dt a

while Loops

We accomplish this loop with a while statement.

while statements keep a block of code running

(repeating/looping) so that sensor values can be continually
checked and a decision made.

The while statement checks to see if something is true or false (via
Boolean operators).

while ()

Notice there is no
{ \ terminating

semicolon after

- the while
Code to execute while ctatement
the condition is true

Professional Development Workshop # B h ll‘”
Page :156 © 1993 - 2024 KIPR Dt a

while Statement

Type of sensor; Port number; Notice no
analog, digital, analog (0-5) terminating
analog digital (0-9) statement

while (digital (== 0)

{ \ Boolean logic;
motor (0,) ; > Greater than
motor () ; >= Greater than or equal

! \ < Less than
} <= Less than or equal
Code to execute while the == Equal to

..) I=Not equal to
condition is true .

Professional Development Workshop # B h ll’”
Page :157 © 1993 - 2024 KIPR Dt a

while Loops

The while loop checks to see if a Boolean test is true or false...
* |f the test is true, then the while loop continues to execute the block of code that

immediately follows it.
* |f the test is false, then the while loop finishes, and the line of code after the block of

code is executed.

int main()

{
// Code before loop

while (Boolean test) <€ Block Header
BEgiN e { (no semicolon!)
// Code to repeat ...
End =—p}

// Code after loop

return 0O;

}

Professional Development Workshop # B h ll’”
Page :158 © 1993 - 2024 KIPR Dt a

Built-In Digital Sensor

* The Wombat has a built-in physical button on the right side
of the controller

push button ()

The Wombat also has built-in touch screen buttons on the
bottom of the robot screen (a, b, c and more if needed)

a button() b button() c_button()

® returns a value of 1 if the button is currently pressed

® returns a value of 0 if the button is not being pressed at that time

Professional Development Workshop # B h ll‘”
Page :159 © 1993 - 2024 KIPR Dt a

FaNEM L @)

e

e s e
(mwww e e e

int main ()
{ push button
// Has push button been touched? —
while (push_button() == 0)
{
printf ("Press the Push Button!\n");

}

printf ("Ahh! Something touched my Push Button'!\n");
return 0;

Professional Development Workshop # E h lr
Page :160 © 1993 - 2024 KIPR Dt a

while and Boolean Operators

The Boolean test in a while loop is asking a question:

Is this statement true or false?

®* The Boolean test (question) often compares two values to one
another using a Boolean operator, such as:
== Equal to (NOTE: two equal signs, not one which is an assignment!)

1= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to

Professional Development Workshop # B h ll‘”
Page :161 © 1993 - 2024 KIPR Dt a

Page

A == B Is A equal to B? 5 == 5 ==
A '=B Is A not equal to B? 5 =4 5 I=
A < B Is A less than B? 4 < 5 5 <
A > B Is A greater than B? 5 > 14 4 >
4 <= 5
A <= B Is A less than or equal to B? _ 6 <=
5 <= 5
5 >= 4
A >= B Is A greater than or equal to B? 5 s> & 5 >=

1162

Professional Development Workshop

© 1993 - 2024 KIPR

#Botball

Drive Until Sensor is Pressed

Description: Write a program for the KIPR Robotics Controller that
drives the DemoBot forward until a touch sensor is pressed, and then
stops.

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Drive forward. // 1. Drive forward.

2. Loop: Is not touched? // 2. Loop: Is not touched?
3. Stop motors. // 3. Stop motors.

4. End the program. // 4. End the program.

Professional Development Workshop # B h lr
Page :163 © 1993 - 2024 KIPR Dt a

(50

I i Drive Until Sensor is Pressed

Analysis: Flowchart

This part of the code
is the loop.

Drive forward.

\\ > Stop motors.

\

Return 0

T

Professional Development Workshop # B h ll’”
Page :164 © 1993 — 2024 KIPR Dt a

Drive Until Sensor is Pressed

Solution:

Pseudocode

Source Code

1. Loop: Is it Touched?
1.1 Drive Forward

. Stop Motors

3. End the Program

N

Page :165

int main|()

{
printf ("Drive until bump\n");
while (digital(0) == 0)
{

motor (O,
motor (=2,

}

)
)

ao() ;

return ;

}

Professional Development Workshop # B h ll‘”
© 1993 - 2024 KIPR Dt a

Changing the Condition

1. Change the expected (test condition) value from 0 to 1
2. Objective: Predict/describe what you think the robot will do
3. Run the program

int main()

{
printf ("Drive until bump\n") ;
while (digital(0) == 1)
{
motor (0, 50) ;
motor (2,50) ;
}
ao();
return 0O;
}

Professional Development Workshop # B h ll’”
Page :166 © 1993 - 2024 KIPR Dt a

Square Up using Bump Sensors

®* Sometimes it is useful to have a robot “square up” to
then drive straight 90 degrees from a “wall”.

® This can be done in a number of ways and one common
one is to use two bump (digital) sensors mounted at two
“corners” of the back of the robot.

* What follows are two possible “algorithms/methods”

Professional Development Workshop # B h ll‘”
Page :167 © 1993 - 2024 KIPR Dt a

Square Up using Bump Sensors

Description: Use the pair of touch sensors on the back of the DemoBot to square up on a
wall or PVC structure.

Background diagnostic work: You will need to plug your digital button sensors into digital
ports. A good strategy might be to use the same port number as your motor port. E.g. right
motor plugged into port O, right button sensor plugged into digital 0.

Key Coding Concepts: Each of the digital sensors will need to be “married” to a wheel in
code. One way to handle this is to nest two (if-else pairs) inside of a while loop. Essentially,
one of these pairs will control the left wheel and one will control the right wheel.

Method #1: The robot will move backward until it senses either back bump sensor is pushed.
Upon a sensor being pushed, its’ corresponding wheel will freeze, the other wheel will
continue to move backward until its’ sensor is pushed. At the point, the robot will exit the loop

Bonus: Upon completing a square up, your robot will move forward 1000 ticks.

Professional Development Workshop # B h ll‘”
Page :168 © 1993 - 2024 KIPR Dt a

= Large Touch Sensors Mounted on
= Back of Robot

LECTRON PRL

Professional Development Workshop # B h lr
Page :169 © 1993 - 2024 KIPR Dt a

Square Up Method #2

Description: Write a program for the KIPR Robotics Controller that
drives backward to orient your robot perpendicular to a “PVC wall”.

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Loop: Both sensors touched? // 2. Loop: Are both sensors pressed?

If only right sensor touched? // 3. 1f right sensor is touched turn CCW
Else If only left sensor touched? // 4. Else-If left sensor is touched turn CW
Else drive backward // 5. Else drive backward

AW N

End the program when both ~ // 4. End the program.

touched // note: CCW means counter clockwise (CW)

Professional Development Workshop # B h lr
Page :170 © 1993 - 2024 KIPR Dt a

Square Up Method #2 Solution

int main ()

{
printf ("Back Up to Square Up :-)\n");

while ((digital(2) == 0) || (digital(0) == 0)) // Left or Right is not pressed
{
if ((digital(2) == 0) && (digital(0) == 1)) // Right is pressed (not Left)
{
motor (2,) ;
motor (0,) ; // turn CCW backwards with right motor at zero
}
else if ((digital(®) == 1) && (digital(0) == 0))
{
motor (2,) ; // turn CW backwards with left motor at zero
motor (0,) ;

}
else // just keep going backwards

{

motor (2,) ; motor (0,)
}
} Assumes that motor 0 and digital O are on the
0 right side and motor 3 and digital 3 are on the
ao H
return 0: left side.

Professional Development Workshop # B h ll’”
Page :171 © 1993 - 2024 KIPR Dt a

Tophat Sensors to Square Up

Description: Use a pair of tophat sensors to assist you in squaring up on a black line.

Physical Build: Each large tophat sensor will need to be mounted, pointed down and approximately 1/4” off of the
surface. To make it an accurate square up, the two top hats will need to be the mounted on opposite sides but
equidistance from the wheels. (Ask for assistance if needed) This sensor-based system is easier with large tophat
sensors compared to small top hats, but can be done with either.

Background diagnostic work: You will need to plug your tophat sensors into analog ports. A good strategy
might be to use the same port number as your motor port. E.g. right motor plugged into port 0, right tophat
plugged into analog 0. You will want to determine the black and white value for each sensor and determine a
midpoint that will allow you denotate

Key Coding Concepts: Each of the tophat sensors will need to be “married” to a wheel in code. One way to
handle this is to nest two (if-else pairs) inside of a while loop. Essentially, one of these pairs will control the left
wheel and one will control the right wheel.

Goal #1: The robot will move forward until it senses a black line. Upon a sensor reading black, its’ corresponding
wheel will freeze, the other wheel will continue to move forward until its sensor reads black. At the point, the robot
will exit the loop

Bonus: Upon sensing black, your robot will slowly move backwards until the exact black/white line is reached

Professional Development Workshop # B h lr
Page :172 © 1993 - 2024 KIPR Dt a

Measuring Distance

Infrared “ET” Range (distance) Sensor

Professional Development Workshop # B b ll"
Page :173 © 1993 - 2024 KIPR Dt a

Learning about Analog Sensors

e Returns the analog value of the port (a value
in the range 0 to 4095). Analog ports are
numbered O through 5.

e Light, slide, range and reflectance sensors are
examples of sensors you would use in analog
ports.

o P

Light Sensor Slide Sensor “ET” Range Sensor Small Reflectance Sensor

Professional Development Workshop # B h ll‘”
Page :174 © 1993 — 2024 KIPR Dt a

(50

=l

Range Sensor Mounted on Robot

Professional Development Workshop # B h ll’”
Page :175 © 1993 - 2024 KIPR Dt a

\ -)
| N

Bl

Tefwimimin v wwimw P
Lol])l wi]]]]

7 Sensor plug
’ orientation

el = -
4 S
Plug your
analog
sensor into

analog port 0

Range Sensor

= o

[
I
I
|
I
I
\

Professional Development Workshop # B h ll‘”
Page :176 © 1993 - 2024 KIPR Dt a

Page

Analod Sensor O 1
Anhalod Sensor 1 1
Anhalod Sensor 2 1
Anhalod Sensor 3 1
Anhalod Sensor 4 1
Anhalod Sensor 5 1
Diaital Sensor O 0
Diaital Sensor 1 0
Diaital Sensor 2 8
0
0
0
0
0
0
3

Diaital Sensor 3
Diaital Sensor 4
Diaital Sensor 5
Diaital Sensor 6
Diaital Sensor 7
Diaital Sensor 8
Diaital Sensor 9
Accelerometer X

\ “ET” Range Sensor
\ (or Wall-E?)

Read the values when your ET sensor is pointed at an object and

:177

slowly move it toward/away from the object
(this is a distance sensor)

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a-

ET (Wall-E) Sensor Information

* Low values: indicate greater distance (farther from robot)
* High values: indicate shorter distance (closer to robot)

* Optimal range is ~¥4” and further away

* 0” to 3.5” values are not optimal

* Objects closer than the focal point (~4”) will have the same
readings as those further away.

i Home Back i : Home 1 Back ‘
Analoa Sensor 0 951 B Analoa Sensor O 2316 -
Analoa Sensor 1 1104 Analoa Sensor 1 1106
Analoa Sensor 2 1123\ Lower Analoa Sensor 2 1124\ Larger
Analod Sensor 3 1131 Value Anhaloa Sensor 3 1133 Value
Analoa Sensor 4 1038 Analod Sensor 4 2004
Analoa Sensor 5 1084 Analod Sensor 5 1663
Diaital Sensor O 0 Diaital Sensor O 0
Diaital Sensor 1 0 Diaital Sensor 1 0
Diaital Sensor 2 0 Diaital Sensor 2 0
Diaital Sensor 3 0 Diaital Sensor 3 0
Diaital Sensor 4 0 Diaital Sensor 4 0
Diaital Sensor 5 0 Diaital Sensor 5 0
Diaital Sensor 6 0 Diaital Sensor 6 0
Diaital Sensor 7 0 Diaital Sensor 7 0
Diaital Sensor 8 0 Diaital Sensor 8 0
Diaital Sensor 9 0 Diaital Sensor 9 0
Accelerometer X 8 Accelerometer X 8
LiFe I [LiFe I a

Professional Development Workshop # B h ll‘”
Page :178 © 1993 - 2024 KIPR Dt a

ET Sensor Values

Focal Point

Objects that are
inside the focal
point return a

smaller #, too Objects that are farther away return a smaller
close to object number

0400 900 ~2700 2600 2000 1500 900 0

Useful range of the sensor

You may need to adjust the value chosen, up or down a little, for your desired
distance from an object. Optimal distance is about 4” away from the sensor.

Professional Development Workshop # B h lr
Page :179 © 1993 - 2024 KIPR Dt a

Page

ET Sensor Focal Point Problem

Using the sensor values you should see that the farther away an
object is the lower the value returned. The closer an object is
the higher the value until you get within ~4” of the sensor.

1. Extend your arm in front of you with your thumb pointed up.

2. Focus on your thumb and then slowly bring your thumb
toward your face.

3. What happens when your thumb gets close to your face?

— Did it get blurry? Yes! It got within the focal point of your
eyes (where you could focus on it and make it clear)

4.The ET sensor also has a focal point and if the object is too
close the sensor cannot tell if it is close or far away.

5. When attaching your ET sensor to your robot consider the ~4”
distance from your sensor to its focal point

Professional Development Workshop # B h lr’
1180 © 1993 — 2024 KIPR Dt a

Learning to Use an ET Analog

Sensor
Type of sensor: Port number: Notice no
analog, digital, analog 0-5 terminating
\ digital 0-9 semi-colon
. _ . /
while (analog () <)) Boolean logic
{ > Greater than
motor (0U,40); >= Greater than or equal
motor (3,40); < Less than
} <= Less than or equal
== Equal to

What you want it to repeat while
checking to see if the while
statement is true

I=Not equal to

Professional Development Workshop # B h lr
Page :181 © 1993 - 2024 KIPR Dt a

Page

1. Open a new project, name it “Find the Wall”.
2. Write and compile a program that will find the

wall and stop.

Pseudocode (Task Analysis)

1. Print Find the Wall and Stop

2. Check the sensor value in analog port 1,

Is the value <= 270072

3. Drive forward as long as the value is <=

2700 (or your determined value)

4. Exit loop when value is 2700 (or your

determined value) or greater

5. Shut everything off

Professional Development Workshop

1182

© 1993 - 2024 KIPR

[Print Find the....]

3T

MOVE FORWARD

#Botball

while “find the wall” Solution

#include <kipr/botball.h>

int main|()

{
printf ("Find the wall\n");
while (analog(0) <=)
{
motor (0, 40) ;
motor (=,40) ;
}
ao();

return ;

} Professional Development Workshop # B h ll’”
Page :183 © 1993 - 2024 KIPR Dt a

ET - Find the Wall and Back Up

Pseudocode (Task Analysis)
1. Print Find the Wall and Back Up

2. Check the sensor value in analog port 1, [PHmFmdﬂmm.]
Is the value <= 27007 <>

3. Drive forward as long as the value is <= MOVE FORWARD
2700 (or your determined value) ~{l

4. Exit loop when value is 2700 (or your
determined value) or greater

Is the

5. Back up for 3 seconds value <=

6. Shut everything off

This is an example of taking a shorter exit loop l
program and building/expanding upon | Move Backwards 3 seconds |
it to accomplish more.

Professional Development Workshop
Page :184 © 1993 — 2024 KIPR

#Botball

Analog Sensor:

Small Top Hat Sensors

This is a reflectance sensor that works at short distances. There is an
infrared (IR) emitter and an IR collector in this sensor. The IR emitter
sends out IR light and the IR collector measures how muchis |

reflected back. -

Amount of IR reflected back depends on surface texture,
color and distance to surface among other factors.

This sensor is excellent for line following

Black materials typically absorb IR and reflect very little IR while
white materials typically absorb little IR and reflect most of it back

« If this sensor is mounted at a fixed height above a surface, it is easy to
distinguish a dark color from a light color

« Connect to an analog port (0 to 5)

Professional Development Workshop # B h ll‘”
Page :185 © 1993 - 2024 KIPR Dt a

1. Thisis an analog () sensor so plug it into any of your
analog ports O through 5
* Values returned can be between 0 and 4095
* Mount the sensor on the front of your robot so that it
is pointing to the ground and ~1/4” from the surface

\

i

Surface

Professional Development Workshop # B h lr
Page :186 © 1993 - 2024 KIPR Dt a

Professional Development Workshop #B th ll’”
Page :187 © 1993 - 2024 KIPR D a

Reading Sensor Values

From the Sensor List

With the IR sensor plugged into analog port #0
 OQOver a white surface the value is (~200)
* Over a black surface the value is (~3200)

ARl S A] |Anajsgacnser? 132s€ A —

Analoa Sensor 2 1102 I Analoa Sensor 2 1108 |

Analoa Sensor 3 1121 Analoa Sensor 3 1122

Analoa Sensor 4 2700 | Analod Sensor 4 639 |

Analoa Sensor 5 2058 Analoda Sensor 5 899

Diaital Sensor O 0 Diaital Sensor O 0

Diaital Sensor 1 0 I Diaital Sensor 1 0 |

Diaital Sensor 2 0 Diaital Sensor 2 0

Diaital Sensor 3 0 | Diaital Sensor 3 0 |

Diaital Sensor 4 0 Diaital Sensor 4 0

Diaital Sensor 5 0 Diaital Sensor 5 0

Diaital Sensor 6 0 l Diaital Sensor 6 0 |

Diaital Sensor 7 0 Diaital Sensor 7 0

Diaital Sensor 8 0 | Diaital Sensor 8 0 |

Diaital Sensor 9 0 Diaital Sensor 9 0

Accelerometer X 6 i Accelerometer X 5 i

l |
e m = = L ____ - e m = = d_ o __ -
{ Your IR sensor is correctly ! Your IR sensor is correctly
: mounted when you have : : mounted when you have values :
! values between ~2900 and : ' between ~175 and ~300 on the !
| .

\ ~3800 on the Black Surface 1 \ White Surface. X

Professional Development Workshop # B h ll
Page :188 © 1993 - 2024 KIPR Dt a

Understanding the IR Values

1. Place your IR analog sensor in one of the analog ports (0 to 5).
2. After mounting your IR sensor, check value when sensor is over black on Mat
A, B or black tape

~1600

0 200 2000 4095

Less than or equal to 1600 Greater than 1600

My black threshold value is ~1600

Professional Development Workshop # B h ll’”
Page :189 © 1993 - 2024 KIPR Dt a

Find the Black Line

Pseudocode (Task Analysis) [Lookinggo'r Black
1. Prints looking for black line Line
2. Check the sensor value 1n analog port O, MOVE FORWARD
<= 1600
3. Drive forward as long as the value is <=
1600

4. Exit loop when wvalue is 1600 or greater

5. Shut everything off

Found Black Line

U

Professional Development Workshop
Page :190 © 1993 — 2024 KIPR

Botball

#include <kipr/botball.h>

int main ()

{
printf ("Find the black line\n");
while (analog(0) <)
{
motor (U, /2) ;
motor (=, 74); // why slightly less?
}
ao();
return 0O;
}

Professional Development Workshop
Page :191 © 1993 - 2024 KIPR

#Botball

Connections to the Game Board

Description: Navigate to and manipulate game pieces utilizing sensors and
motor position counter.

Goal #1: Mat A — Place a stack of two, 3” blocks on circle 4, 6, or 9. Starting in the start
box, drive forward until the cube is sensed and then stop within 3” without touching it.
Bonus: Adding to the previous program, once the cube is sensed, pick it up and navigate
back to the start box.

Goal #2: Mat A —Set a 3” block on coordinates A12. Driving using motor position
counter, pick up the 3” block and set it in the yellow garage. Robot or game pieces may
not cross solid lines of targeted garage. Bonus: Set 3” blocks on A6, A12, and A18. One
by one pick them up, and then stack them in the yellow garage.

Professional Development Workshop # B h ll‘”
Page :192 © 1993 - 2024 KIPR Dt a

(50

Starting Programs with a Light

=l

®* The light sensor is a cool way to automatically start your robot
and critical for Botball robots at the beginning of the game.

®* Thewait for light() function allows your program to run after
your robot senses a light.

® Note: It has a built-in calibration routine that will come up on the screen
(a step-by-step guide for this calibration routine is on a following slide).

®* The light sensor senses infrared light, so light must be emitted
from an incandescent light, not an LED light.
® For our activities, you can use a flashlight.

®* The more light (infrared) detected, the lower the reported value.

Professional Development Workshop # B h ll‘”
Page :193 © 1993 - 2024 KIPR Dt a

wait for light Function

wait for light(0);
// Waits for the light on port #0 before going to the next line.

What is this?

int main () ‘t/’,/”¢////,
{

wait for light(0);
printf ("I see the light!\n");
return

}

Professional Development Workshop # B h ll’”
Page :194 © 1993 — 2024 KIPR Dt a

Plug in the Light Sensor

(Light source needed, cell phone works)

NG @)

R e . .

IO | -
(s wisiwnn]w]nnw

P s Sensor plug
’ orientation
’
s
s
s
N S
7z S
[Plugyour
| light sensor 1
. |
: into analog
 port0 |
\ /

Professional Development Workshop # B h ll‘”
Page :195 © 1993 - 2024 KIPR Dt a

Starting with a Light

Description: Write a program for the KIPR Wombat that waits for a
light to come on, drives the DemoBot forward for 3 seconds, and

then stops. Flowchart
Analysis: What is the program supposed to do? —

*) Wait for light.
Pseudocode Comments : D”"ei’;"a""
1. Wait for light. // 1. Wait for light. [Waitfor3seconds
2. Drive forward. // 2. Drive forward. v
3. Waitfor3seconds. // 3. wait for 3 seconds. [Stop motors.]
4. Stop motors. // 4. Stop motors.

Return 0
5. Endthe program. // 5. End the program.

Professional Development Workshop # B h ll‘”
Page :196 © 1993 - 2024 KIPR Dt a

When you use the wait for 1light () function in your program,
the following calibration routine will run automatically.

Home Back Stop Home Back Stop Home Back Stop
Turn on light and press button... Turn off light and press button... Waiting for starting light...
Light ON Value: 2655 <----
= A Light ON Value: 3276 Light ON Value: 190@
/ \ Light OFF Value: 40* H=mmm Light OFF Value: 405
——) == =~ NV =
N I / \ Threshold Value: 211
/ [\ I () I I
' |) V=0 Current Value: 1924 ®¥<———-
A JgB | ¢ JL_A J B J c JLA | B | c |
r ——— — 1 ________ - , —————— L —————————————— L —————— \
When the light is on (low value), | When the light is off (high value), | IIY ill et a “Waitine for starting !
wi ITIN r ran
I\ press the “push” button. | I press the “push” button. ou Wit get a “Iviaiting for starting ,
- I light” when done correctly. |

: You will get a “BAD CALIBRATION"” |
| message when not done correctly, |
1 and you will need to push the |
I “push” button to run through the
I routine again.

one of the first functions called in your program.

Professional Development Workshop # B h ll‘”
Page :197 © 1993 - 2024 KIPR Dt a

Starting with a Light

Solution:
Source Code
,,/’ int main ()
Pseudocode _-=" {
wait for light(0);
1. Wait for light.
2. Dr::.ve forward. motor (0,); //forward
3. Wait for 3 seconds. motor (3,) ;
4. Stop motors. 1 () ;
5. End the program. msleep ’
ao();
~~. return 0O;
\\\\\ }

Execution: Compile and run your program (test it with a light sensor).

Professional Development Workshop # B h ll’”
Page :198 © 1993 - 2024 KIPR Dt a

Starting with a light

Solution: Use a function! Source Code

;. | void drive_forward();
int main ()

// {

// wait for light(0);
/
Pseudocode / drive forward() ;
msleep () ;
1. Wait for light.
2. Drive forward. ao();
3. Wait for 3 seconds.
4. Stop motors. return 0;
5. End the program. }
void drive_forward()

N {

N motor (0,
N motor (2,

v |}

)’
)’

Execution: Compile and run your program.

Professional Development Workshop # B h ll’”
Page :199 © 1993 - 2024 KIPR Dt a

(50

Starting Programs with a Light

=l

®* The light sensor is a cool way to automatically start your robot
and critical for Botball robots at the beginning of the game.

®* Thewait for light() function allows your program to run after
your robot senses a light.

® Note: It has a built-in calibration routine that will come up on the screen
(a step-by-step guide for this calibration routine is on a following slide).

®* The light sensor senses infrared light, so light must be emitted
from an incandescent light, not an LED light.
® For our activities, you can use a flashlight.

®* The more light (infrared) detected, the lower the reported value.

Professional Development Workshop # B h ll‘”
Page :200 © 1993 - 2024 KIPR Dt a

wait for light Function

wait for light(0);
// Waits for the light on port #0 before going to the next line.

What is this?

int main () ‘t/’,/”¢////,
{

wait for light(0);
printf ("I see the light!\n");
return

}

Professional Development Workshop # B h ll’”
Page :201 © 1993 - 2024 KIPR Dt a

Plug in the Light Sensor

(Light source needed, cell phone works)

NG @)

R e . .

IO | -
(s wisiwnn]w]nnw

P s Sensor plug
’ orientation
’
s
s
s
N S
7z S
[Plugyour
| light sensor 1
. |
: into analog
 port0 |
\ /

Professional Development Workshop # B h ll‘”
Page :202 © 1993 - 2024 KIPR Dt a

Starting with a Light

Description: Write a program for the KIPR Wombat that waits for a
light to come on, drives the DemoBot forward for 3 seconds, and

then stops. Flowchart
Analysis: What is the program supposed to do? —

*) Wait for light.
Pseudocode Comments : D”"ei’;"a""
1. Wait for light. // 1. Wait for light. [Waitfor3seconds
2. Drive forward. // 2. Drive forward. v
3. Waitfor3seconds. // 3. wait for 3 seconds. [Stop motors.]
4. Stop motors. // 4. Stop motors.

Return 0
5. Endthe program. // 5. End the program.

Professional Development Workshop # B h ll‘”
Page :203 © 1993 - 2024 KIPR Dt a

When you use the wait for 1light () function in your program,
the following calibration routine will run automatically.

Home Back Stop Home Back Stop Home Back Stop
Turn on light and press button... Turn off light and press button... Waiting for starting light...
Light ON Value: 2655 <----
= A Light ON Value: 3276 Light ON Value: 190@
/ \ Light OFF Value: 40* H=mmm Light OFF Value: 405
——) == =~ NV =
N I / \ Threshold Value: 211
/ [\ I () I I
' |) V=0 Current Value: 1924 ®¥<———-
A JgB | ¢ JL_A J B J c JLA | B | c |
r ——— — 1 ________ - , —————— L —————————————— L —————— \
When the light is on (low value), | When the light is off (high value), | IIY ill et a “Waitine for starting !
wi ITIN r ran
I\ press the “push” button. | I press the “push” button. ou Wit get a “Iviaiting for starting ,
- I light” when done correctly. |

: You will get a “BAD CALIBRATION"” |
| message when not done correctly, |
1 and you will need to push the |
I “push” button to run through the
I routine again.

one of the first functions called in your program.

Professional Development Workshop # B h ll‘”
Page :204 © 1993 — 2024 KIPR Dt a

Starting with a Light

Solution:
Source Code
,,/’ int main ()
Pseudocode _-=" {
wait for light(0);
1. Wait for light.
2. Dr::.ve forward. motor (0,); //forward
3. Wait for 3 seconds. motor (3,) ;
4. Stop motors. 1 () ;
5. End the program. msleep ’
ao();
~~. return 0O;
\\\\\ }

Execution: Compile and run your program (test it with a light sensor).

Professional Development Workshop # B h ll’”
Page :205 © 1993 - 2024 KIPR Dt a

Starting with a light

Solution: Use a function! Source Code

;. | void drive_forward();
int main ()

// {

// wait for light(0);
/
Pseudocode / drive forward() ;
msleep () ;
1. Wait for light.
2. Drive forward. ao();
3. Wait for 3 seconds.
4. Stop motors. return 0;
5. End the program. }
void drive_forward()

N {

N motor (0,
N motor (2,

v |}

)’
)’

Execution: Compile and run your program.

Professional Development Workshop # B h ll’”
Page :206 © 1993 - 2024 KIPR Dt a

Page

Making a Choice

Program flow control with conditionals
if-else conditionals
if-else and Boolean operators
Using while and if-else

Professional Development Workshop # B b lr
: 207 © 1993 - 2024 KIPR Dt a

Program Flow Control with

Conditionals

®* What if we want to execute a block of code only if certain
conditions are met?

®* We can do this using a conditional, which controls the flow of the

program by executing a certain block of code if its conditions are
met or a different block of code if its conditions are not met.

® This is similar to a loop, but differs in that it 0I1|V executes once.

Professional Development Workshop # B h ll‘”
Page :208 © 1993 - 2024 KIPR Dt a

Program Flow Control with

Conditionals

This part of the code
is the conditional.

[Code after conditional.]

o

Professional Development Workshop # B h ll’”
Page :209 © 1993 - 2024 KIPR Dt a

if-else Conditionals

The if-else conditional checks to see if a Boolean test is true or false...

* If the test is true, then the if conditional executes the block of code that immediately follows it.
* |f the test is false, then the if conditional does not execute the block of code, and the else block of

code is executed instead.
What is this?

int main () ‘(////)ﬂ(
{

if (digital(s) == 1)< What does this say?
{

printf ("Touched!\n") ;
}
else
{

printf ("Not touched!\n");
}

printf ("Good-Bye.\n") ;
return 0O;

}

Notice: In the same way that a while loop doesn’t have a semicolon after the condition, neither
does an if-else conditional.

Professional Development Workshop # B h lr
Page :210 © 1993 - 2024 KIPR Dt a

Using while and if-else

You can also put conditionals inside of (nested in) loops. This is beneficial when we
want to keep checking a set of conditions over and over, instead of just a single
time.

What should go inside
int main ()

the condition for the
{ / while loop?

A while (digital(0) == 0)
A if (analog(0) >)
Notice how the $ printf("It's dark in here!\n");
}
n r
.{ and } braces else
line up for each
block of code! $ printf ("I see the light!\n");
v }
} // loop ends when button is pressed
Y return 0;
}

Professional Development Workshop # B h ll’”
Page :211 © 1993 - 2024 KIPR Dt a

Pseudocode (Task Analysis)

1.
2.

Check the a button, if it is not pressed

Drive forward as long as the value is <=2700 (or your
determined value)

. Drive backwards as long as the value is >2700 (or

determined value)

4. Exit loop when a button is pressed

Page

. Shut everything off

Professional Development Workshop
1212 © 1993 — 2024 KIPR

If the a
button is not
pressed?

\\ ﬂ Stop motors.

Return 0.

@ &
Bl

ET Drive forward to object

#include <kipr/botball.h>
int main()

{
printf ("Drive to the object\n");

while (a_button() == 0) // A button not pressed
{

if (analog(0) <=) // Far away drive forward

{

motor (0, 20)
motor (2, 20)

}

.
14

.
14

if (analog(0) >) // Too close back up
{
motor (0,-20) ;
motor (2,-20);
}
}
ao();
return 0O;

} Professional Development Workshop
Page :213 © 1993 — 2024 KIPR

#Botball

Maintain Distance

Description: Write a program for the KIPR Robotics Controller that makes
the DemoBot maintain a specified distance away from an object, and
stops when the touch sensor is touched.

Pseudocode
1. Loop: Is not touched?

If: Is distance too far?
Drive forward.
Else:
If: Is distance too close?
Drive reverse.
Else:
Stop motors.
Stop motors.
End the program.

w N

Professional Development Workshop # B h ll‘”
Page :214 © 1993 — 2024 KIPR Dt a

Maintain Distance

Solution:

Pseudocode

Source Code

1.

2.
3.

Loop: Is not touched?
If: Is distance too far?
Drive forward.
Else:
If: Is distance too close?
Drive reverse.
Else:
Stop motors.
Stop motors.
End the program.

Page

: 215

int main()

}

{
while (digital(0) == 0)
{

if (analog(5) <)
{
motor (0,),
motor (3,),
}
else
{
if (analog(5) >)
{
motor (0, -75);
motor (2, -75);
}
else // sensor value is 1800-2600
{

ao();

}
}
} // end of loop

ao() ;
return

Reflectance Sensor for Line Following

For this activity, you will need a reflectance sensor.

® This sensor is a short-range reflectance sensor.
®* There is both an infrared (IR) emitter and an IR detector inside of this sensor.
* IR emitter sends out IR light = IR detector measures how much reflects back.

®* The amount of IR reflected back depends on many factors, including surface
texture, color, and distance to surface.

==
This sensor is excellent for line-following!
* Black materials typically absorb most IR - they reflect little IR back!
®* White materials typically absorb little IR - they reflect most IR back!

® If this sensor is mounted at a fixed height above a surface, it is easy to
distinguish a black line from a white surface.

Professional Development Workshop # B h ll‘”
Page :216 © 1993 - 2024 KIPR Dt a

Attach the Reflectance Sensor

® Attach the sensor on the front of your robot so that it is pointing
down at the ground and is approximately 1/8” from the surface.

* Areflectance sensor is an analog sensor, so plug it into any of
analog sensor port #0 through 5. Port O for this example.
® Recall that analog sensor values range from 0 to 4095.

Sensor Plug)
. . If \(\._|| l‘| I ,“ .
Orientation § (F DN e 00)

i La/RRIRIAIRIN

[wiwmimis v wwm s
(i wwie mnsw

: Surface :

7

Professional Development Workshop # B h ll‘”
Page :217 © 1993 - 2024 KIPR Dt a

r
| Analog Sensor |
I Ports#0to5 |

—————————

Reading Sensor Values

from the Sensor List

You can access the Sensor Values from the Sensor List on your Wombat

* This is very helpful to get readings from all of the sensors you are
using, and then know which values/ranges to use in your code

Analoa Sensor 0
Analod Sensor 1
naloa Sensor 2
Analoa Sensor 3
naloa Sensor 4
nalod Sensor 5
aital Sensor O
al Sensor 1
al Sensor 2
al Sensor 3
tal Sensor 4
tal Sensor 5
ta

a

ta

ta

HNFHON)
OWWNOO
U ONON]

k4

_ Motors ‘ 2 Sensor Graph

® Servos |8 Sensor List

.

@ Create 3 ?1 Camera

Sensor 6
Sensor 7
Sensor 8
Sensor 9
elerometer X

- s . ?

/ : \
(m===== Conmmm= o e P D 0
. _ Select Sensor List I Sensor Ports ;1 Sensor Values

Professional Development Workshop # B h ll‘”
Page :218 © 1993 - 2024 KIPR Dt a

reYeYeYeYoYeoYeYeYo)

WO OOOOOOOOOR
-

>0000000000>>>>

(8]
(0]

Reading Sensor Values

from the Sensor List

With the IR sensor plugged into analog port#0

| .
* Over a white surface the value is (~200) 7\ | oo vineswllie

. » |
 QOver a black surface the value is (~¥3000) J |

will be the same! j

Analoa Sensor O 3520« e Analoa Sensor 0 209
ﬁna od Sensor 1 1084 1 Analoq Sensor 1 1065(1
naloa Sensor 2 1102 I Analoa Sensor 2 1108 |

Analoa Sensor 3 1121 Analoa Sensor 3 1122
Analoa Sensor 4 2700 | Analod Sensor 4 639 |
DRl sshare 8% P o
Bk sensary 8| Bk sensary 8 !
Diaital Sensor 3 0 I Diaital Sensor 3 0 |
Bidial ehzers 8 Bidial shzerd 8
i S . Bidal senser? 8 !
Diaital Sensor 8 0 I Diaital Sensor 8 0 I
Diaital Sensor 9 0 Diaital Sensor 9 0
Accelerometer X 6 i Accelerometer X 5 i
l |
________ L __. e =4

.’Values between ~2900-~3800)
over the Black Surface

'Values between ~175-~300 over.

|
: : the White Surface.
: :
J

\————

-

Professional Development Workshop # B h ll
Page :219 © 1993 - 2024 KIPR Dt a

Line Following Strategy: while - Is the button pushed?
Follow the line’s right edge by alternating the following 2 actions:
1. i f detecting dark, arc/turn right

2. 1f detecting light, arc left.

3. Think about a sharp turn. What will your motor function look like? Remember the
bigger the difference between the two motor powers the sharper the turn.

Professional Development Workshop # B h ll’”
Page :220 © 1993 - 2024 KIPR Dt a

Understanding the IR Values

1. Place your IR analog sensor in one of the analog ports (0 to 5).
2. After mounting your IR sensor, check that the values are: white between

175-225 and black between 2900-3100; write down your values.

Find your threshold or middle value (approximately)
4. This number will be the value you need for the find the black line activity.

w

Turn left 1600 Turn right

: /zoo\ 2000 4095

My white value is ~200 My black value is ~3000

Determine what your threshold or “half way” point will be.
This example is ~1600.

Professional Development Workshop # B h lr
Page :221 © 1993 - 2024 KIPR Dt a

Line-Following

Analysis: Flowchart

Is not
pressed?

Turn/arc right. Turn/arc left.

NS zans)

\ i Stop motors.

Return 0

e

Professional Development Workshop # B h ll’”
Page :222 © 1993 - 2024 KIPR Dt a

Page

@ You must cover all values

Turn left Turn right

a 0 <= 1600 > 1600 4095
If N | 1600

Assume all these Assume all these

values are WHITE values are BLACK

Turn left if
value is <=

/ — \

This is the part of \
the code that tells \
the Robot what to

\ do when it sees /

black or white.

N 7

_/

Stop motors.

N/

Return 0

e

Professional Development Workshop # B h ll”
1223 © 1993 — 2024 KIPR Dt a

Line Following

Description: Starting with your DemoBot at the starting line
of the KIPR Mat B. Write a program to have the robot travel
along the path using the Top Hat sensor (line follow).

| o = . botbal org

Professional Development Workshop # B h lr
Page :224 © 1993 — 2024 KIPR Dt a.

Line Following Solution

Solution: Source Code
// int main ()
/
R
/ while (digital(0) == 0)
/
y {
,' if (analog(C) >)
/
{
Pseudocode (Comments) / motor (0, 90 :
motor (2, 5);
1. Loop: Is not pressed? }
If: Is dark detected?
Turn/arc right. else
Else: {
Turn/arc left. motor (U, 5);
2. Stop motors. \ motor (5, 20);
3. End the program. }
N\
AN ao();
N\
\
AN return 0;
\
. }

Professional Development Workshop # B h ll’”
Page :225 © 1993 - 2024 KIPR Dt a

Change the threshold. Increase the “arc speed”.

int main ()

{
printf ("Follow the line\n");

. .. — The value of 1600 or the “threshold” value is %
while (digital(0) == 0)
{ way between the observed values.
Tf (analog (V) >)€ Remember black reflects less IR than white but
motor (0, 90); the value is higher.
\ motor (5, °5); Notice the Boolean operators > 1600 or <= 1600
else Your value may be much lower due to lighting,
{ placement of sensor and other factors.
motor (0, 5); <g—
motor (2,) €—
} } Also increasing the “arc speed” (by making the
difference between the two motor power
ao(); values greater) may have a significant impact.

return ;

Professional Development Workshop # B h ll‘”
Page :226 © 1993 - 2024 KIPR Dt a

Pseudocode

Source Code

1. Loop: Is not pressed?
If: Is dark detected?
Turn/arc right.
Else:
Turn/arc left.
. Stop motors.
. End the program.

w N

Page :227

void turn_left();
void turn_right();

int main()
{
while (digital(0) == 0)
{
if (analog((0) >)
{
turn_right() ;
}
else
{
turn_left();
}
}

ao();
return 0;

}

void turn_right()
{

motor (0,)
motor (3,); // Turn/arc right.

}

void turn_left()
{

motor (0,)
motor (2,); // Turn/arc left.
}

Logical Operators

Multiple Boolean Tests
while, if, and Logical Operators

Professional Development Workshop # B b ll‘”
Page :228 © 1993 - 2024 KIPR Dt a

Logical Operators

Recall the Boolean test for while loops and if-else conditionals...

while (Boolean test) if (Boolean test)

®* The Boolean test (conditional) can contain multiple Boolean tests
combined using a “Logical operator”, such as:

* &é& And e 1
° Il Or ' We put parentheses (and) !

. around each Boolean test... |

NOtk///,/”//ﬁ____lj____1, __________ *\\\\‘

while ((Boolean test 1) && (Boolean test 2))

if ((Boolean test 1) || (!Boolean test 2))

®* The next slide provides a cheat sheet for Logical operators.

Professional Development Workshop # B h lr
Page :229 © 1993 - 2024 KIPR Dt a

Logical Operators Cheat Sheet

true && false

A && B Are both A and B true? true && true false && true
false && false

true || true
A || B Is at least one of A or B true? false || true false || false
true || false

true && false

' (A && B) Is at least one of A or B false? false && true true && true
N false && false
\\ true || true
"(A || B) Are both of A and B false? false || false false || true

true || false

X
\ ! negates the true or false Boolean test.

Professional Development Workshop # B h ll"
Page :230 © 1993 - 2024 KIPR Dt a

while, 1£f, and Logical Operators

Examples

while ((get_create lbump() == () && (get create rbump() == 0))
{

// Code to execute ...

}

while ((digital(9) == 0) && (digital(2) == 0))
{

// Code to repeat ...
}

if ((digital(®) == 1) || (digital(Z) !'= 0))
{

// Code to execute ...

}

if ((analog(®) <) || (digital(9) == 1))
{
// Code to repeat ...

}
Professional Development Workshop # B h ll’”
Page :231 © 1993 - 2024 KIPR Dt a

Page

Using Logical Operators

What does this say?

/

int main()

{

create connect() ;

/

while ((get create lbump() == () && (get create rbump() ==

{

create drive direct (100,)/

}

create stop();
create_disconnect();
return

))

1232

Professional Development Workshop
© 1993 — 2024 KIPR

#Bothall

Botball Game Review

Game Q&A
Construction, documentation, and changes
shut down_in () function
wait for light() function

Professional Development Workshop # B b ll"
Page :238 © 1993 - 2024 KIPR Dt a.

Remember Loops?

®* How doesthewait for light () function work?

®* We can use a loop, which controls the flow of the program by
repeating a block of code until a sensor reaches a particular value.
® The number of repetitions is unknown
® The number of repetitions depends on the conditions sensed by the robot

Professional Development Workshop # B h lr
Page :239 © 1993 - 2024 KIPR Dt a

Botball Tournament Functions

These two functions should be
two of the first lines of code in
your Botball tournament program!

wait for light(0);
// Waits for the light on port #0 before going to the next line.

shut down in() ;
// Shuts down all motors after 119 seconds (just less than 2 minutes).

* This function call should come immediately after the wait for 1light() in your code.

If you do not have this function in your code, your robot may not automatically turn off
its motors at the end of the Botball round and you will be disqualified!

Professional Development Workshop # B h ll’”
Page :240 © 1993 — 2024 KIPR Dt a

Tournament Templates

int main()

{

// initial variable declarations, camera and servo setup may go here

wait for light(0); // change the port number to match the port you use
shut_down_in(); // shut off the motors and stop the robot after 119 seconds

// This is where most of your code will go

// Specifically the code to play the game
// after the light comes on (after hands off)

return 0O;

Professional Development Workshop # B h ll"
Page :241 © 1993 — 2024 KIPR Dt a

Running a Botball Tournament Program

Description: Write a program for the KIPR Robotics Controller that
waits for a light to come on, shuts down the program in 5 seconds,
drives the DemoBot forward until it detects a touch, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Wait for light. // 1. Wait for light.

2. Shut down in 5 seconds. // 2. Shut down in 5 seconds.
3. Drive forward. // 3. Drive forward.

4. Wait for touch. // 4. Wait for touch.

5. Stop motors. // 5. Stop motors.

6. Endthe program. // 6. End the program.

Professional Development Workshop
Page :242 © 1993 — 2024 KIPR

(50

Running a Botball Tournament Program

=l

Analysis: Flowchart

9

[Wait for light.]

.

[Shut down in 5 seconds.]

<

[Drive forward.

¢

[Wait for touch.]

¢

[Stop motors.

Return 0

Professional Development Workshop # B h ll’”
Page :243 © 1993 — 2024 KIPR Dt a

Running a Botball Tournament Program

Solution:

Pseudocode

Source Code

. Wait for light.

. Drive forward.

. Wait for touch.
. Stop motors.

. End the program.

o L1 WNMNR

. Shut down in 5 seconds.

int main ()

{
wait for light(0U);

shut down _in(5);

while (digital(0) ==
{

motor (0,) ;
motor (2,) ;
}
ao() ;
return 0O;

1L}

Execution: Compile and run your program (test it at different

distances).

Page :244

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

When you use the wait for 1light () function in your program,
the following calibration routine will run automatically.

Home Back Stop Home Back Stop Home Back Stop
Turn on light and press button... Turn off light and press button... Waiting for starting light...
Light ON Value: 2655 <----
= A Light ON Value: 3276 Light ON Value: 190@
/ \ Light OFF Value: 40* H=mmm Light OFF Value: 405
——) == =~ NV =
N I / \ Threshold Value: 211
/ [\ I () I I
' |) V=0 Current Value: 1924 ®¥<———-
A JgB | ¢ JL_A J B J c JLA | B | c |
r ——— — 1 ________ - , —————— L —————————————— L —————— \
When the light is on (low value), | When the light is off (high value), | IIY ill et a “Waitine for starting !
wi ITIN r ran
I\ press the “push” button. | I press the “push” button. ou Wit get a “Iviaiting for starting ,
- I light” when done correctly. |

: You will get a “BAD CALIBRATION"” |
| message when not done correctly, |
1 and you will need to push the |
I “push” button to run through the
I routine again.

one of the first functions called in your program.

Professional Development Workshop # B h ll‘”
Page :245 © 1993 — 2024 KIPR Dt a

Running a Botball Tournament Program

Reflection:

What happens if the touch sensor is pressed in less than 5 seconds after
starting the program?

®* What happens if the touch sensor is not pressed in less than 5 seconds after
starting the program?

®* What is the best way to guarantee that your program will start with the light in
a Botball tournament round? (Answer: wait for 1light(0))

®* What is the best way to guarantee that your program will stop within 120
seconds in a Botball tournament round? (Answer: shut down in(119))

Use these functions in your Botball tournament code!

Professional Development Workshop # B h lr
Page :246 © 1993 — 2024 KIPR Dt a

Custom Functions (Quick Recap)

void drive forward(); // function prototype
When you
call this int main()
i {
funCthn, —ﬁdrive_forward(); // function call
how long return 0;
ary . }
will it run
for? o . L
void drive_ forward() // function definition
{
motor (O,)
motor (2,)
msleep ()
ao();
}

Now, what if you don’t want it to run for this long each time?

Professional Development Workshop # B h ll’”
Page :247 © 1993 — 2024 KIPR Dt a

® Function arguments: values you will set when you call the
function

return 0O;
} // end main

{

motor (O,)
motor (-2,)

ao() ;

msleep (milliseconds) ;

// function prototype

// function call

// function defi

nition

Page :248

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

Writing Custom Functions with

Arguments

#include <kipr/botball.h>

void drive forward(int milliseconds); // function prototype

int main ()

{
drive forward (): // function call
return 0O; - -
} The value in the function call

sets the value of the argument...

void drive forward(int milliseconds) // function definition

{

motor (0, ©0); ... which is then used in the
motor (2,)) e
msleep (milliseconds) ; function definition.
ao();

Professional Development Workshop # B h ll’”
Page :249 © 1993 — 2024 KIPR Dt a

Writing your Own Functions

with Multiple Arguments

#include <kipr/botball.h>
void drive forward(int power, int milliseconds); // function prototype

int main ()
{
drive forward (50,); // function call
return 0O; - -
} The value in the function call

sets the value of the argument...

void drive_ forward(int power, int milliseconds) // function definition

{

motor (0, power); ... Which is then used in the

motor (=, power); function definition.
msleep (milliseconds)?

ao() ;

Professional Development Workshop # B h ll’”
Page :250 © 1993 - 2024 KIPR Dt a

Arguments that Change Over Time

#include <kipr/botball.h>

void drive forward(int power, int milliseconds); // function prototype

int main ()

{
drive forward(:0,
drive forward (75,
return 0O;

-
Ne

The values in the SECOND function call
are now 75 and 2000 respectively

Ne

void drive forward(int power, int milliseconds) // function definition

{
motor (0, power) ;7
motor (°, power);

msleep (milliseconds); ... which is then used in the
ao() ;

} function definition.

Professional Development Workshop # B h ll’”
Page :251 © 1993 - 2024 KIPR Dt a

Writing Your Own Driving with Gyro

Function

* The builtin Wombat Gyrometer can be used to help your robot
drive straight

* To do this you need to account for the bias (how far off the gyro is
from predicted-similar to magnetic declination)

* Then you can use the bias in a bang-bang code to drive your robot

#include <kipr The main has two custom functions:
: calibrate gyro() ;
double calibrate_gyro(); h

drive with gyro(speed, time,

< void drive_with_gyro(int speed, double time, double bias); bias) T

- { mav ticks/sec seconds
; printf("Hello World\n");

double bias = calibrate_gyro();
drive_with_gyro (1500,15,bias);
return 0; The calibrate function

) returns a bias that is then
‘ used as the 3rd parameter in
the drive with gyro function

Professional Development Workshop # B h ll‘”
Page :252 © 1993 - 2024 KIPR Dt a

Calibrating Your Gyro Function

aouble calibrate_gyro()
{
int i = 0;
double bias = 0.2;
int avg = 0;
while(i < 50){
avg += gyro_z();
msleep(1);
i++;
printf("Gyro Z: %d\n",gyro_z());

}- The calibrate function
bias = avg / 50.0; returns a bias that is then

printf (" Bias: %1lf\n", bias); used as the 3rd parameter in
return| bias; —3 the drive with gyro function

(next slide)

Professional Development Workshop # B h ll’”
Page :253 © 1993 - 2024 KIPR Dt a

Calibrating Your Gyro Function

void drive_with_gyro(int speed, double time, double bias)
{
double startTime = seconds();
double theta = 0;
int right_motor = 3;
int left_motor = 0;
while(seconds() - startTime < time)
{
if (theta < 1000 && theta > -1000)
{
mav(right_motor, speed);
mav(left_motor, speed);
}
else if (theta < 1000)
{
mav(right_motor, speed + 100);

mav(left_motor, speed - 100);]
} - P The bias came from your

else other custom function
{

mav(right_motor, speed - 100);
mav(left_motor, speed + 100);

}
msleep(10);
theta += (gyro_z() - bias) ;
printf("sf\n",theta);

}

ao();

by

1ent Workshop B h ll’”
Page :254 © 1993 — 2024 KIPR # Dt a

Calibrating Your Gyro Function

#include <kipr/wombat.h>

| double calibrate_gyrol();
void drive_with_gyro(int speed, double time, double bias);

i int main()

printf("Hello World\n");
[double bias = calibrate_gyro();
| drive_with_gyro (1 15,bias);
return 9;

}

double calibrate_gyro()

i{
i int i = 0;
double bias = 0.2;
int avg =
[while(i < 50){
| avg += gyro_z();

msleep(1);

ite;

printf("Gyro Z: %d\n",gyro_z(});

bias = avg / 50.0;
i printf(“"New Bias: %1f\n", bias);
return bias;

I}

void drive_with_gyro(int speed, double time, double bias)
{

double startTime = seconds();

double theta = 0;

int right_motor = 3;

int left_motor = 8;
i while(seconds() - startTime < time)

{
| if (theta < 1000 & theta > -1000)
[{

| mav(right_motor, speed);
mav(left_motor, speed);

else if (theta < 1000)

{
mav(right_motor, speed + 1
i mav(left_motor, speed - 10¢
}
[else
! {
| mav(right_motor, speed - 1 H
mav(left_motor, speed + 1¢
msleep(10);
theta += (gyro_z{() - bias) ;
i printf("%f\n",theta);
i }
ao();

. .—.—__.onal Development Workshop #B b ll"
Page :255 © 1993 - 2024 KIPR Dt a

Moving the iRobot Create 2: Part 1

Setting up the Create 2
The Create 2 and the KIPR Robotics Controller
Create functions

Professional Development Workshop # B b ll"
Page :256 © 1993 - 2024 KIPR Dt a.

Charging the Create 2

® For charging the Create 2, use only the power supply
which came with your Create.

® Damage to the Create from using the wrong charger is easily
detected and will void your warranty!

®* The Create 2 power pack is a nickel metal hydride
battery, so the rules for charging a battery for any
electronic device apply.
® Only an adult should charge the unit.
® Do NOT leave the unit unattended while charging.
® Charge in a cool, open area away from flammable materials.

Professional Development Workshop # B h ll‘”
Page :257 © 1993 - 2024 KIPR Dt a

Eiiiﬁg’,ffff! Enabling the Battery of the Create 2

*The yellow battery tab pulls out of place on the bottom of the Create.

*The battery will be enabled as soon as the tab is removed.

Create
Underside

Professional Development Workshop # B h ll’”
Page :258 © 1993 - 2024 KIPR Dt a

Uncovering and Charging the Create 2

®* Remove the green protective tray from the top of the Create.
® Use only the Create charger provided with your kit.
®* The Create docks onto the charging station.

Remove this Serial
Port

Professional Development Workshop # B h ll’”
Page :259 © 1993 - 2024 KIPR Dt a

=9 Mounting the Robotics Controller onto
I the Create 2

Build the Create 2 DemoBot

Professional Development Workshop # B h ll’”
Page :260 © 1993 - 2024 KIPR Dt a

(50

Create 2 Connect/Disconnect Functions

=l

All programs used with the Create Flowchart

MUST start with
create connect () —_— \/

and end with [Connect to Create

create disconnect|() N/
- [Drive forward 2 seconds.]

\/

[Turn off motors]

\/

[Disconnect from Create

Professional Development Workshop # B h lr
Page :261 © 1993 - 2024 KIPR Dt a

Tournament Templates

int main() // for your Create robot

{

create_connect() ;
// other initial items as needed (servo and camera calibration for example)

wait for light(0); // change the port number to match the port you use
shut_down_in(); // shut off the motors and stop the robot after 119 seconds

// Your code

create_disconnect();
return 0O;

Professional Development Workshop # B h lr
Page :262 © 1993 - 2024 KIPR Dt a

Create 2 Motor Functions

Note: Create commands run until a different motor command is received.

create drive direct(T , T) ;

Left Motor Speed Right Motor Speed

(in mm/second) (in mm/second)
Examples:
create drive direct(,) ; // Moves forward at 100 mm/sec.
create drive direct(,); // Create will turn left.
create drive direct(,); // Create will turn right.

create stop(); // Turns off the Create motors.

WARNING: the maximum speed for the Create motors is 500 mm/second = 0.5 m/second.
It can jump off a table in less than one second!
Use something like 200 for the speed (moderate speed) until teams get the hang of this.

Professional Development Workshop # B h lr
Page :263 © 1993 - 2024 KIPR Dt a

Moving the Create 2

Description: Write a program for the KIPR Robotics controller that
drives the Create forward at 100 mm/second for four seconds, and
then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Connect to Create. // 1. Connect to Create.

2. Drive forward at 100 mm/sec. // 2. Drive forward at 100 mm/sec.
3. Wait for 4 seconds. // 3. Wait for 4 seconds.

4. Stop motors. // 4. Stop motors.

5. Disconnect from Create. // 5. Disconnect from Create.

6. Endthe program. // 6. End the program.

Professional Development Workshop # B h lr
Page :264 © 1993 — 2024 KIPR Dt a

(50

Moving the Create 2

=l

Analysis: Flowchart

\/

[Connect to Create.]

[Drive forward at 100 mm/sec.]

\/

[Wait for 4 seconds.]

\/

[Stop motors.]

\/

[Disconnect from Create.]

\/

Professional Development Workshop # B h lr
Page :265 © 1993 - 2024 KIPR Dt a

Moving the Create 2

Solution:

Pseudocode

Source Code

1. Connect to Create 2.

3. Wait for 4 seconds.
4. Stop motors.
5. Disconnect from Create 2.

2. Drive forward at 100 mm/sec.

int main()

{
create_connect() ;
create_drive direct(
msleep ()
create stop();
create_disconnect() ;

return 0O;

14

) ;

Execution: Compile and run your program.

Professional Development Workshop

Page :266

© 1993 - 2024 KIPR

#Botball

Touch an Object and “Go Home”

Description: Write a program for the KIPR Robotics Controller that
drives the Create forward until it touches an object (or gets as close
as it can), and then returns to its starting location (home).

®* Move the object to various distances.

Starting line

Starting line
_— L} »

Starting line

Professional Development Workshop # B h lr
Page :267 © 1993 - 2024 KIPR Dt a

Moving the iRobot Create 2: Part 2

Create Distance and Angle Functions

Professional Development Workshop # B b ll‘”
Page :268 © 1993 - 2024 KIPR Dt a

The Create has a built-in sensor that measures

the distance traveled (in millimeters) and \

the angle turned (in degrees). -~--- ------—-------

! Thisis similar to the |

I motor position counter... !

1 I

get create_distance() ; ; but better! :

// Tells us the distance the Create has traveled in mm.

set create distance(0);
// Resets the Create distance traveled to 0 mm.

get create_total angle();
// Tells us the total angle the Create has turned in degrees.
// Positive angles are to the left. Negative angles are to the right.

set create_ total angle(0);

// Resets the Create angle turned to 0 degrees.

Professional Development Workshop # B h ll’”
Page :269 © 1993 - 2024 KIPR Dt a

Using Create 2 Functions

Examples:
int main () int main ()
{ {
create_connect() ; create_connect() ;
set_create_distance (0); set _create_total angle(0);
while (get_create distance() <) while (get_create_ total_angle() <)
{ {
create_drive direct(,) create_drive direct(,)
} }
create_stop(); create_stop();
create disconnect() ; create disconnect() ;
return ; return ;
} }

Distance is in millimeter. Have students try different distances. 92 mm + 36”

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

Page :270

Printing Create 2 Sensor Values

Sometimes it is helpful to see the actual values from the create sensors. To do
this, you can use the same print function we used before to print text.

To print a changing int value:

This is where it will print the

provided value. Must be %d
/ for integers.

printf ("Angle Value: %d\n", get create total angle())
printf ("Value: %d\n", get create distance());

- ~

This is just regular

After the comma is where you
provide what value you want

text and can to print. It can be a function
change. call (as here) or a variable
name.

Professional Development Workshop # B h ll‘”
Page :271 © 1993 - 2024 KIPR Dt a

Turn function create

Try different angles

Notice that the bigger the angle the less accurate it is.
So you can find out how many degrees it’s off.
Distance-degrees off

void create spin right (int degrees) ; Y°1d c:lseate_spln_rlght (int degrees);
. . - - int main
int main {
{ i : :
create spin right (360);//full circle Create_spin right (360);//full circle
- - Return o
return 0;)
} . o
void create_spin _right (degrees) E/OId create_spin_right (degrees)
{ .
while (get_create_total angle() >) wh:{.le (get_create_total angle() >)
{
create drive_direct(,) }
}

create_stop() ; create_stop() ;

} }

create drive direct(,);

Ran left side program and noticed it was about 33 degrees off, so
now add 33 in this program.

Professional Development Workshop # B h ll’”
Page :272 © 1993 - 2024 KIPR Dt a

Page

Printing Create Sensor Values

int main ()
{
create_connect() ;
set create_total angle(0);
while (get_create_total angle() >)
{

create_drive direct(’);

}

create stop();

printf ("Angle Value: %d\n", get create_total angle());
printf ("Distance Value: %d\n", get create distance());

create_disconnect();
return ;

Creighton uses <90. D
Printing the create sensor values can be a good way to debug an issue!

You can print before, insiporlc; and aft?r the Ioop as well.

1273

ofessional Development Works
© 1993 — 2024 KIPR

op

#Botball

iIRobot Create 2 Sensors

Create 2 Sensor Functions
Logical Operators

Professional Development Workshop # B b ll‘”
Page :274 © 1993 — 2024 KIPR Dt a

Create 2 Sensor Functions

To get Create 2 sensor values, type get create sensor(),
replacing sensor with the name of the sensor
Ilcllghtbumpl

I rclightbump cw drop
| r£1ightbump | rfcliff /I.fcllff 1£1ightbump |
rbump pecrice e lbump I
I rlightbump 'i(}lf’ ‘ /I llightbump I
| rclifsf 1cliff |

bl ¢

I distance I ‘ "“““\\\ I total angle I

Professional Development Workshop # B h ll’”
Page :275 © 1993 - 2024 KIPR Dt a

Create 2 Sensor Functions

get create_ lbump ()

get create_ rbump ()

// Tells us if the Create left/right bumper is pressed.
// Like a digital touch sensor.

get create_ lwdrop()

get create_ rwdrop()

get create_ cwdrop ()

// Tells us if the Create left/right/center wheel is dropped.
// Like a digital touch sensor.

get create lcliff amt()

get create lfcliff amt()

get create rcliff amt()

get create rfcliff amt()

// Tells us the Create left/left-front/right/right-front cliff sensor value.
// Like an analog reflectance sensor.

get create battery capacity()
// Tells us the Create battery level (0-100).

Professional Development Workshop # B h ll’”
Page :276 © 1993 - 2024 KIPR Dt a

Using Create 2 Sensor Functions

/

What does this say?

{

int main()

create_connect(); /

while (get_create rbump() ==

{

create_drive direct(,
}
create_stop() ;
create disconnect() ;
return_

)

Power is -500 to 500

Page :277

Professional Development Workshop
© 1993 — 2024 KIPR

#Bothall

Drive Until Bumped

Description: Write a program for the KIPR Wombat that drives the
Create 2 forward until a bumper is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Connect to Create. // 1. Connect to Create.
2. Loop: Is not bumped? // 2. Loop: Is not bumped?
1. Drive forward. // 2.1. Drive forward.
3. Stop motors. // 3. Stop motors.
4. Disconnect from Create. // 4. Disconnect from Create.
5. Endthe program. // 5. End the program.

Professional Development Workshop # B h lr
Page :278 © 1993 - 2024 KIPR Dt a

Drive Until Bumped

Analysis: Flowchart
\/

Connect to Create.

Drive forward.

\\ X Stop motors.

A4

Disconnect from Create.

\/

Return 0

T

Professional Development Workshop # B h ll’”
Page :279 © 1993 - 2024 KIPR Dt a

Solution:

Source Code

/| int main ()

R

Page

Pseudocode / create_connect() ;
1. Connect to Create 2. while (get_create_ rbump() == 0)
2. Loop: Is not bumped? {
Drive forward.
3. Stop motors. create_drive direct(,)
4. Disconnect from Create 2. }
5. End the program.
create_stop();
\\ create_disconnect() ;
\
\ return 0O;
‘Y
\
Professional Development Worksho ®
: 280 © 1993 - 2824 KIPR i # BDthall

%% Connections to the Game Board

Description: Make the iRobot Create move forward in a straight line
until it comes into contact with another object. Then have it make a
902 turn and again travel in a straight line for exactly 0.9 meters.
Before your program ends, print to the screen the values for the total
angle the create has turned and total distance it has driven. Solution
to this one is on your own.

Professional Development Workshop # B h ll‘”
Page :281 © 1993 - 2024 KIPR Dt a

Line Follow With the Create

Description: Make the iRobot Create follow a line. The Create will
follow a line or a piece of tape for a distance 1 yard.

What you need to know: You can use the Create front cliff sensor and
the create_drive_direct commands to accomplish the same task that
you accomplished in an earlier demobot line follow activity.

Point to note: The scale and value for the

get create 1fcliff amt () may differ from the values of the
analog sensor ports on the Wombat. You may consider finding the
black and white values for this sensor by printing values of each to
your screen.

Professional Development Workshop # B h ll‘”
Page :282 © 1993 - 2024 KIPR Dt a

Finding Sensor Values

int main ()

{
printf ("Print values to screen to get threshold.\n");
create connect() ;

while (a button() == 0) // Push grey button to stop loop

{
printf ("LF cliff value is %d\n", get create lfcliff amt());
msleep () ; // Give humans time to read it

}

create_disconnect();
return ;

Run this program and place the Create DemoBot over the white surface (higher
value with Create) and black lines (lower value with Create) and record down
the values and determine a “threshold” (middle) value.

Professional Development Workshop # B h ll’”
Page :283 © 1993 - 2024 KIPR Dt a

Line Follow with Create Solution

int main ()

{
int threshold = INSERT YOUR VALUE;

int speed = ;

printf ("Follow the non-yellow brick road!\n");
while ((get_create_ lbump() == 0) && (get_create rbump() == 0))

{
if (get_create l1lfcliff amt() < threshold)
{

create_drive direct(*speed, speed);

}

else
{
create_drive direct(speed, *speed) ;
}
}
ao() ; You will need to find the threshold value (see prior slide)
return 0O;

and adjust the speed and multiplier for how fast the turn
is (for sharper turns the difference must be greater)

Professional Development Workshop # B h ll’”
Page :284 © 1993 — 2024 KIPR Dt a

Square Up With the Create

Description: Make the iRobot Create square up on a black line while
moving in the forward direction.

What you need to know: You can use the Create cliff sensors(these
are further back than what you might use for line follow) and the
create_drive_direct commands to accomplish the same task that you
accomplished in the square up with demobot.

Point to note: The scale and value for the

get create lcliff amt () and

get create rcliff amt () may differ from the values of the
analog sensor ports on the Wombat. You may consider finding the
black and white values for this sensor by printing values of each to

your screen. oro Devel Worke .
rofessional Development Workshop B h ll
Page :285 © 1993 - 2024 KIPR # Dt a

Square Up With the Create sample

code

while (1) {
if (get create_ lcliff amt()>gray &&
get create rcliff amt()>gray)//gray is the midpoint between black and
white
{
create drive direct(speed,speed);//you will need to set a
variable speed that corresponds to some value
}
if (get create rcliff amt()<gray) {
create drive direct (speed, stop)
}
if (get create lcliff amt()<gray) {
create drive direct(stop, speed);
}
if (get create lcliff amt()<gray &&
get create rcliff amt()<gray) ({
create drive direct(stop,stop);
break;

Professional Development Workshop # B h ll’”
Page :286 © 1993 - 2024 KIPR Dt a

Square Up with Create Solution

int main ()
{
int threshold = INSERT YOUR VALUE; int speed = ;
printf ("Drive forward to black line, square up then stop.\n");
while ((get create 1lfcliff amt() < threshold) ||
(get:§reate:rfcliff:amt() < threshold))
{
if ((get_create lfcliff amt() < threshold) &&
(get_create rfcliff amt() >= threshold))
{
create_drive direct (*speed, *speed) ;
}
else if ((get_create 1lfcliff amt() >= threshold) &s&
(get_create rfcliff amt() < threshold))
{
create_drive direct (*speed, *speed) ;
}
else
{
create_drive direct (speed, speed) ;
}
}
create_stop() ;
create_disconnect() ;
return 0O;

} Professional Development Workshop # B h lr
Page :287 © 1993 - 2024 KIPR Dt a

Logical Operators

Multiple Boolean Tests
while, if, and Logical Operators

Professional Development Workshop # B b ll‘”
Page :288 © 1993 - 2024 KIPR Dt a

Logical Operators

Recall the Boolean test for while loops and if-else conditionals...

while (Boolean test) if (Boolean test)

®* The Boolean test (conditional) can contain multiple Boolean tests
combined using a “Logical operator”, such as:

* &é& And e 1
° Il Or ' We put parentheses (and) !

. around each Boolean test... |

NOtk///,/”//ﬁ____lj____1, __________ *\\\\‘

while ((Boolean test 1) && (Boolean test 2))

if ((Boolean test 1) || (!Boolean test 2))

®* The next slide provides a cheat sheet for Logical operators.

Professional Development Workshop # B h lr
Page :289 © 1993 - 2024 KIPR Dt a

Logical Operators Cheat Sheet

true && false

A && B Are both A and B true? true && true false && true
false && false

true || true
A || B Is at least one of A or B true? false || true false || false
true || false

true && false

' (A && B) Is at least one of A or B false? false && true true && true
N false && false
\\ true || true
"(A || B) Are both of A and B false? false || false false || true

true || false

X
\ ! negates the true or false Boolean test.

Professional Development Workshop # B h ll"
Page :290 © 1993 - 2024 KIPR Dt a

while, 1£f, and Logical Operators

Examples

while ((get_create lbump() == () && (get create rbump() == 0))
{

// Code to execute ...

}

while ((digital(l) == 0) && (digital(?) == 0))
{

// Code to repeat ...
}

if ((digital(l) == 1) || (digital(?) !'= 0))
{

// Code to execute ...

}

if ((analog(®) <) || (digital(l) == 1))
{
// Code to repeat ...

}
Professional Development Workshop # B h ll’”
Page :291 © 1993 - 2024 KIPR Dt a

Page

Using Logical Operators

What does this say?

/

int main()

{

create connect() ;

/

while ((get create lbump() == () && (get create rbump() ==

{

create drive direct (100,)/

}

create stop();
create_disconnect();
return

))

:292

Professional Development Workshop
© 1993 — 2024 KIPR

#Bothall

Connections to the Board Game

Description: Write a program for the KIPR Robotics Controller that drives
the Create forward 1 meter or until a bumper is pressed, and then stops.
* How do we check for distance traveled? Answer: get create distance() <

* How do we check for bumper pressed? Answer: get_create rbump() == 0
* How do we check for that both are true?
Answer: ((get_create_distance()) <) && (get_create_rbump() == 0))

Analysis: What is the program supposed to do?

Pseudocode
1. Connect to Create.

2. Loop: Is distance < 1000
AND not bumped?
2.1. Drive forward.
3. Stop motors.
4. Disconnect from Create.
5. End the program.

Professional Development Workshop # B h ll‘”
Page :293 © 1993 - 2024 KIPR Dt a

(50

%E:y i Drive for Distance or Until Bumped
Analysis: Flowchart =
\/

Connect to Create.

Drive forward.

\\ X Stop motors.

A4

Disconnect from Create.

\/

Return 0

T

Professional Development Workshop # B h ll’”
Page :294 © 1993 — 2024 KIPR Dt a

Solution:

Pseudocode

1. Connect to Create.
2. Loop: Is distance < 1000
AND not bumped?
2.1. Drive forward.
3. Stop motors.

5. End the program.

4. Disconnect from Create.

Page :295

Source Code

/| int main()

{
// 1. Connect to Create.

create_connect();

while ((get_create distance() <

{
// 2.1. Drive forward.

} // end while

// 3. Stop motors.
create_stop() ;

// 4. Disconnect from Create.
create_disconnect();

// 5. End the program.
return
\| } // end main

// 2. Loop: Is distance < 1000 AND not bumped?

create_drive direct(,)

) && (get_create rbump() == 0))

Professional Development Workshop
© 1993 — 2024 KIPR

#Bothall

Drive for Distance or Until Bumped

Reflection: What did you notice after you ran the program?

What happens if the Create right bumper is pressed before the Create travels a
distance of 1 meter?

®* What happens if the Create right bumper is not pressed before the Create
travels a distance of 1 meter?

®* What happens if the Create left bumper is pressed instead?

®* How could you also check to see if the Create left bumper is pressed? Answer:

while ((get_create_distance() <) && (get_create lbump() == 0) && (get_create_rbump() == 0))

Professional Development Workshop # B h ll‘”
Page :296 © 1993 - 2024 KIPR Dt a

Color Camera

Using the Color Camera
Setting the Color Tracking Channels
About Color Tracking
Camera Functions

Professional Development Workshop # B b ll"
Page :297 © 1993 - 2024 KIPR Dt a.

Color Camera

For this activity, you will need the camera.

®* The camera plugs into one of the USB (type A) ports on the back of the
Wombat.

®* Warning: Unplugging the camera while it is being accessed can freeze the
Wombat, requiring it to be rebooted.

Ethernet port USB Ports

Professional Development Workshop # B h lr
Page :298 © 1993 - 2024 KIPR Dt a

Camera Build

Professional Development Workshop B h ll’”
Page :299 © 1993 - 2024 KIPR # Dt a

Setting the Color Tracking Channels

=l

1. Select Settings

2. Select Channels

_ [Home
| | @Camera Vi |l= Network
o Programs | O Channels |8 Language
:c:: Motors and Sensors E GU! ;a Update
P Settings ' ar Calibrate = Battery
' ’ — Hide Ul I|IB Backup
/ . -

/

Professional Development Workshop # B h lr
Page :300 © 1993 - 2024 KIPR Dt a

To specify a camera configuration, press the Add button.

Enter a configuration name, such as find_green, then press the
Ent button.

Highlight the new configuration and press the edit button.

4 5

I Home I Back I I Home I Bac; I
& awerty.conf [" Edit] Rename querty.conf [awertv.cont [/’ Edit }
sRename || |a= #Rename

v Default | '« Default |

+ Add |

'@ Remove |

Page

: Note: if there is more than one configuration, select one, and
: press the “Default” button to make it be the one in use! !

Professional Development Workshop # B h lr’
:301 © 1993 - 2024 KIPR Dt a

6. Pressthe Add button to add a channel to the configuration.
7. Select HSV Blob Tracking, then OK to set this up to track a color.

8. Highlight the channel, then press Configure to edit settings.
e The first channel is O by default. You can have up to four: 0, 1, 2, and 3.

Professional Development Workshop # B h ll‘”
Page :302 © 1993 - 2024 KIPR Dt a

Setting the Color Tracking Channels

S
S
9. Place the colored object you want to track in front of the camera

and touch the object on the screen.
* A bounding box (dark blue) will appear around the selected object.

10. Press the Done button.

0 ! s
[1) Visual
o S

E /

)
)

[_:Manual

[B Done (ﬂ-— 10

Professional Development Workshop # B h lr
Page :303 © 1993 - 2024 KIPR Dt a

Setting the Color Tracking Channels

S
S
11. If you want to MANUALLY adjust the seetings, select Manual

12. Adjust individual values
13. Press the Done button.

~ Visual
¢ Manual €¢—— 11

No image available. Check
camera connection.

a8 Done |<«—— 13
Hue Lsa }to\a \
12 _)Saturation\o [to[s ‘
Value |, |to]s |

Professional Development Workshop # B h lr
Page :304 © 1993 — 2024 KIPR Dt a

Verify the Color Channel is Working

1. From the Home screen, press Motors and Sensors button.

2. Press the Camera button.

3. Make sure you select the configuration

4. Objects specified by the configuration should have a bounding box.

Configuration: =Green.conf

Professional Development Workshop # B h lr
Page :305 © 1993 - 2024 KIPR Dt a

Tracking the Location of an Object

®* You can use the position of the object in relation to the
center x (column) of the image to tell if it is to the left or right.

® The image is 160 columns wide, so the center column (x-value) is 80.
® An x-value of 80 is straight ahead.

® An x-value between 0 and 79 is to the left.

® An x-value between 81 and 159 is to the right.

® You can also use the position of the object in relation to the center y (row) of
the image to tell how far away it is. Object

(0, 0) (80, 0) (159, 0) 0,1,2, ..

(largest to smallest)

Channel # J
"

get object center x (0, 0);

Left Right // The x-value of the tracked object.
// Note: number between 0 and 159.
(0, 119) (80, 119) (159, 119)

Professional Development Workshop # B h ll‘”
Page :306 © 1993 - 2024 KIPR Dt a

Camera Functions

camera_open() ;

// Opens the connection to the camera.

camera_close() ;
// Closes the connection to the camera.

camera update () ;
// Gets a new picture (image) from the camera and performs color tracking.

get_object count()
// The number of objects being tracked on the specified color channel.

get _object center x(,)
// The center x (column) coordinate value of the object # on the color channel.

get_object center y(,)
// The center y (row) coordinate value of the object # on the color channel.

Professional Development Workshop # B h ll’”
Page :307 © 1993 - 2024 KIPR Dt a

Initial Camera Functions

Resource
Programming statements always used with the camera:

camera open() ; // opens camera
camera update () ; // retrieves current image

If either of these two functions execute successfully they return 1, otherwise
they return a value of 0

camera close(); // closes camera

On older controllers, after opening the camera you should wait (msleep) three
seconds before doing anything else; this gives the camera time to boot.

Professional Development Workshop # B h lr
Page :308 © 1993 - 2024 KIPR Dt a

Camera Functions Continued

A commonly used camera function, almost always after camera update () but
often forgotten about. This function returns the number of objects “seen/found” in
the last camera update (which could have been a while ago)

if (get_object count(U) > 0)

{
// code if ohifect seen o1\ channel (color) O
}
CEanr\;&é Thg:;e,zdl,;s our default Number of objects should be
e This could be red or blue or greater than zero otherwise nothing
green, etc. If you use a was seen for the color represented

variable you could have and by this channel

integer named red_channel
and that would be easier to
understand here

Professional Development Workshop # B h ll‘”
Page :309 © 1993 - 2024 KIPR Dt a

Assessment: Camera Functions

Write the answers to the following questions:

1. Which function updates the camera image?

. Which function turns the camera on?

3. When would you need to update the camera image? Before
or after finding the object?

4. Which function is looking for the colored object?

5. What is the function that prints something to the screen?

N

Professional Development Workshop # B h ll‘”
Page :310 © 1993 - 2024 KIPR Dt a

(50

Assessment: Camera Functions Answers

=l

l.camera update(); // retrieves current image
2 . camera open|() ;

3.Before

4 . get object count(channel#)> 0;

5.printf("Hi") ;

Professional Development Workshop # B h ll’”
Page :311 © 1993 - 2024 KIPR Dt a

| See Green

Camera Activity 1

Goal: Write a program that will allow you to check to see if the camera is
tracking the color that you want it to see.

1. Setup one of the channels for green objects

2. Write a program to look for green objects until the A button is pressed
a) The program should print the words “| see green” when green objects come
into view
b) The program should print “Where is the green?” when it doesn’t seen green.

Professional Development Workshop # B h lr
Page :312 © 1993 - 2024 KIPR Dt a

| See Green Continued

Example of code planning sheet:
1. Open the camera (starts communication between Controller & Camera)
2. Checks the status of the a_button

a) We will use this step to create the loop that will keep your camera
checking for images

Update the camera image (takes a snapshot of the current camera view)
Get an object count (the number of objects in the image)
Print “I see green.” (if green object seen, otherwise “Where is the green?”)

o v AW

Remember if you want to stop the program you must press the A button:
because you had a while loop that exits when a_button is pressed

Hello, world !

Buttons

I

Professional Development Workshop # B h lr
Page :313 © 1993 - 2024 KIPR Dt a

Resource
® Each object is numbered with

the one with the largest area
being object 0, the next largest
being 1, and so on.

Each object is bounded by a
blue box on the sensor screen

The function below can be used

to get the number of objects

visible. This should only be done

after a camera update ()

get object count(

Channel #:0,1,2, or 3 —

e \We setup O for green

—

Professional Development Workshop

:314

#Botball

© 1993 - 2024 KIPR

| See Green Example

#include <kipr/botball.h>

int main|()
{

camera open(); // opens and establishes communication with the camera
while (a_button() == 0) // loops until the a button is pressed
{

camera update(); // retrieves current camera image

if (get _object count(0) > 0) //does the camera see at least 1 green object

{

printf ("I see green.\n");

} (get_object count(0) > 0)

else

{ / '
} printf ("Where is the green?\n"); channel # (Owas the | v of objects

one we set for green)
} N /
camera close(); //disconnects from the camera
return 0O;

Professional Development Workshop # B h ll"
Page :315 © 1993 - 2024 KIPR Dt a

Page

Printing the Object Count

Camera Activity 2

Goal: Print the number of objects the camera can see.
Activity:
1. Make sure you have configured your camera for this activity. Open a new
project in your folder and write a program that does the following:
a. Opens the camera
b. Update the camera image
c. Print the number of objects on the screen
d. Close camera at the end
2. Proceed to the next slide for a sample solution.

Variations -
Run your program multiple times (or add a loop!) with different amount of

objects (in the desired color, and other colors) in front of the camera and
watch the number change (or not change).

Professional Development Workshop # B h ll‘”
: 316 © 1993 - 2024 KIPR Dt a

Printing the Object Count

Camera Activity 2: One possible solution

int main ()

{

int count; // Create an variable to represent the # of objects
camera open() ; // Opens camera

camera update(); // Updates camera until it succeeds

count = get object count(0); // Capture number of objects seen
printf ("There are %d objects on the screen.\n", count);

camera close(); // Camera closed

return 0O;

~

printf ("There are %d objects on the screen.\n", count);

o/ 4
./°d Is a placeholder for an count is the integer value being placed into %d
integer value

k (note the use of a comma after the closed quote) /

Professional Development Workshop # B h ll’”
Page :317 © 1993 - 2024 KIPR Dt a

Output Examples

15 Objects

Do you see 15 objects in the second image?

Each is highlighted by a blue bounding box. Some are very, very small. The
computer counts each group, no matter how small, as a separate object. What
your eye sees as blue may or may not be the same as what the camera sees as
blue. As an example, a bright white reflected spot off of a table may look white
to you but the camera sees it as having a high concentration of blue light.

Professional Development Workshop # B h ll"
Page :318 © 1993 - 2024 KIPR Dt a

Objects versus Visual Noise

So, how do we figure out what
objects are things we want the
robot to interact with and which are
just environmental noise?

There are other camera functions
that we can use to get information
about each object.

Professional Development Workshop # B h lr
Page :319 © 1993 - 2024 KIPR Dt a

Resource

The camera view is like a graph except the coordinate (0, 0) is in the
top left corner. The max width is 159 and the max height is 119.

\ —
X axis
20 40 60 80 100 120 140

(0,159)

Y axis

Professional Development Workshop # B h ll’”
Page :320 © 1993 - 2024 KIPR Dt a

Object Centers

Resource

Each object has a center. In this case the center would have the
coordinates (x =74,y = 62).

80 100 120 140

Professional Development Workshop # B h ll’”
Page :321 © 1993 - 2024 KIPR Dt a

Getting the Object Center

Resource

These functions can be used to get the center x and center y values of an object:
get object center x(,)
get object center y(,)
Note that the “first” object# (0) is the largest one of the color represented by channel#

Professional Development Workshop # B h ll’”
Page :322 © 1993 - 2024 KIPR Dt a

Finding the Object Center

Camera Activity 3

Goal: Find and print the center coordinates of an object with the camera

1. Make sure you have configured your camera for this activity. Open a new
project in your folder and write a program that does the following:
a. Opens the camera
b. Update the camera image
c. Check to see if there is at least one object on the screen
i. get_object center functions order the objects by size. The largest
object has ID number 0.
d. If there is at least one object, print the object center x and y
coordinates
e. Close camera connection
Variations -
Run your program multiple times with the object in different positions.

Professional Development Workshop # B h ll‘”
Page :323 © 1993 - 2024 KIPR Dt a

Finding the Object Center

Activity 3 Template
int main ()

{
S —— Variables go here

camera open(); //Opens camera

camera update(); //Updates camera until it succeeds

————————eeeee (B) N@W Camiera code goes here

camera close(); // Camera closed

return ;

Professional Development Workshop # B h ll’”
Page :324 © 1993 — 2024 KIPR Dt a

Page

Finding the Object Center

Activity 3: Possible Solution

Variables to be inserted in Camera Template (previous slide)
int x;
int y;

(B) New code to be inserted in Camera Template (previous slide)

if (get_object count(0) > 0)
{
x = get object center x(0, 0);
y = get object center y (0, 0);
printf ("The center of the object is (%d,%d) .\n",x,y);

To print out the x and y values, you could have made two separate printf statements as done
previously. The solution above demonstrates how to format and use multiple integer values in one
printf. Note that the two %d are separated by a comma; as is the two value variables: x, y.

Professional Development Workshop # B h ll‘”
1325 © 1993 - 2024 KIPR Dt a

Turning to an Object

Resource Now that we know where the center
of the object is, we can turn the
robot to align the center of that
object with the center of robot’s field
of view.

-)

Professional Development Workshop B h lr
Page :326 © 1993 - 2024 KIPR # Dt a

Turning to an Object

When the object is turning
it needs to only get within a
range close to the center.
This is usually 75 to 85
along the x-axis.

Professional Development Workshop # B b ll"
Page :327 © 1993 — 2024 KIPR Dt a

Turning to an Object

Resource

Once the object is in the
center, the robot can stop.

Professional Development Workshop # B b ll"
Page :328 © 1993 — 2024 KIPR Dt a

Turning Towards an Object

Camera Activity 4

Goal: Have a robot center itself on an object and print out the coordinates.
Activity:
1. Make sure you have configured your camera for this activity. Open a new
project in your folder and write a program that does the following:
a. Opens the camera
b. If there is an object on the screen print the coordinates of the center
c. Start turning until the object is in the center of the robot
d. Print the new center coordinates of the object
e. Close camera at the end
2. Proceed to the next slide for a sample solution.

Variations -

Have the object start off screen and have the robot turn until it sees it
and it is centered.

Professional Development Workshop # B h ll‘”
Page :329 © 1993 - 2024 KIPR Dt a

Turning Towards an Object

Activity 4 Template

int main()

{
int stop = 0O;
r—————— (A) \/ariables go here

camera open();
while (stop == 0) // Updates camera image until stop pressed

{

camera update () ;
€ (B) Code to find object center goes here

C— (C) COde goes here to turn the robot
}

camera close(); // Camera closed

return 0O;

Professional Development Workshop # B h ll’”
Page :330 © 1993 - 2024 KIPR Dt a

Turning Towards an Object

Activity 4: Possible Solution

(A) Variables to be inserted in Camera Template (previous slide)
int x;
int y;

(B) New code to be inserted in Camera Template (previous slide)
camera update () ;

if (get_object count(0) > 0)

{

x = get object center x(0, 0);
y = get object center y (0, 0);
printf ("The center of the object is (%d,%d) .\n",x,y);

}

Professional Development Workshop # B h ll‘”
Page :331 © 1993 - 2024 KIPR Dt a

Turning Towards an Object

Activity 4: Possible Solution

(C) New code to be inserted in Camera Template (previous slide)
if (get object count(0) > 0)
{ if (get object center x(0,0) < 75)

{ motor (0,) ; motor (3,25) ;

ilse if (get object center x(0,0) > 85)

{

motor (0,25) ; motor (3,)

}

else
{
stop = 1;
ao();
if (get_object count(0) > 0)
{
x = get_object_center x(0, 0);
y = get_object_center y (0, 0);
printf ("The center of the object is (%d,%d) .\n",x,y);
}
}
}

Professional Development Workshop # B h lr
Page :332 © 1993 - 2024 KIPR Dt a

Output Examples

Success Fail

Runner Runner

Camera open successful. Camera open successful.

The center of the object is (139,62). Did not find an object. Ending program.
The center of the object is (85,67). Program exited with code ©

~Wallaby()

Auto-stopping motors

Auto-disabling servos

Auto-stopping and disconnecting the Create
After the automatic create cleanup
~Create()

Program exited with code @

—

Professional Development Workshop # B b ll"
Page :333 © 1993 - 2024 KIPR Dt a.

Fun with Functions

Writing your own functions
Function prototypes, definitions, and calls

Professional Development Workshop # B b ll‘”
Page :334 © 1993 - 2024 KIPR Dt a

Writing Custom Functions

Remember: a function is like a recipe.

®* When you call (use) a function, the computer (or robot) does all of
the actions listed in the “recipe” in the order they are listed.

® Functions are very helpful if you take some actions multiple times:
® driving straight forward > drive forward(); | |
® making a 90° left turn - turn left 90();
® making a 180° turn - turn_around() ; >
® |iftinganarmup > 1ift arm();
® closing a claw - close _claw() ;

We made these up...
and that’s the point!

You can write your
own functions to do

) whatever you want!

® Functions often make it easier to (1) read the main function, and
(2) change distance, turning, timing, or other values as necessary.

Professional Development Workshop # B h lr
Page :335 © 1993 - 2024 KIPR Dt a

Writing Custom Functions

There are three components to a function:

1. Function prototype: a promise to the computer that the function is defined
somewhere (like an entry in the table of contents of a recipe book)

2. Function definition: the list of actions to be executed (the recipe)
3. Function call: using the function (recipe) in your program

Function prototypes
go above main.

Function calls
go insidemain
(or inside other

functions).

Function definitions >
go below main.

Page :336

)} @ 1993 —2Q24 KIPR_ _ |

include <kipr/botball.h>

' void turn_left 90(); |

(R
I

Professional Development Workshop

| :
: while (gmpc (0) <=) :
1 { :
I motor (0,100) ; !
1 motor (3,0) ; :
|

o} :
. ao();

|

Use void in your
function prototype if
you are
commanding the
robot to do
something.

#Botball

Writing Custom Functions

The function prototype and the function definition first line look the same except for one
thing...

include <kipr/botball.h>
prototype

> | void turn left 90();

int main ()

{
turn_left 90();

return ;

}

void turn left 90() \
{ Notice: no semicolon!

while (gmpc (0) <=) 2
{ (Why not?)

definition
>

motor (O,)
motor (2,0) ;

}

ao() ;

Professional Development Workshop # B h ll’”
Page :337 © 1993 - 2024 KIPR Dt a

Writing Custom Functions

include <kipr/botball.h>

void turn_left 90(); <€ The function prototype is a

int main () promise to the computer...

{
turn_left 90();

return 0;
}
void turn left 90() ... that you will tell the
t computer what to do in the
v{whlle (gmpc (U) <=) function definition.
motor (O,),

motor (2,0);

}

ao();

}

Neither the function prototype nor the function definition tell the
computer when to use the function. That is the job of the function call...

Professional Development Workshop # B h ll’”
Page :338 © 1993 - 2024 KIPR Dt a

Writing Custom Functions

include <kipr/botball.h>
void turn left 90();

int main ()

{

turn left 90(); C

return ;

The function call makes the
computer jump down to the
function definition.

void turn_left 90()

The program then executes
all of the lines of code in the
block of code.

{ 3\
while (gmpc (0) <=)
{
motor (0,) ; >
motor (2,0);
}
ao(); J

}

After the computer executes all of the lines of code in
the function definition, the program jumps back up to
the line of code after the function call and continues.

Page

1339

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

Writing Custom Functions

// function prototypes
void turn_left();
void turn_right();

int main()

{
turn_left(); // turn_left function call
turn_right(); // turn right function call
return

void turn_left() // turn left function definition

{

while (gmpc (0) <=)
{
motor (0,) ;
motor (2,0) ;
}
ao();

void turn_right() // turn_right function definition

{

while (gmpc (2) <=)
{
motor (2,) ;
motor (0,0) ;
}
ao();

Page :340 : E BDthalr

Mechanical Design

* At times you may have noticed that you solved problems

not through modifying your code but rather by making
changes to the mechanical design of your robot(s).

* The next couple slides provide some examples

* Additional resources may be found on the team home
base and online

* For example a great intro to Lego® technic design
patterns can be found at:

http://handyboard.com/oldhb/techdocs/artoflego.pdf

Professional Development Workshop # B h lr
Page :341 © 1993 — 2024 KIPR Dt a

Counterbalance

 Motors and servos have limited power
e Struggling to lift a structure?

 Use coins as a counterbalance

N

coins

motor/servo

Professional Development Workshop # B h ll"
Page :342 © 1993 — 2024 KIPR Dt a.

Gearing and Gear Trains

By “combining” gears into a “gear train”, using gears of varying sizes
you can INCREASE or DECREASE the speed and power (torque) of the
end effectors connected to your motors!

motor/servo

* If your motor gear is larger than the next
gear in the “gear train” the “driven gear”
spins FASTER but at the expense of LESS
torque (power).

driven gear

* |If your motor gear is smaller than your motor/serv

=

next gear in the “gear train” the “driven
gear” spins SLOWER but with MORE
tOrque (power). driven gear

Professional Development Workshop # B h ll‘”
Page :343 © 1993 — 2024 KIPR Dt a

Gears to Increase Servo Range

* |f you attach a larger gear to your servo spline and the
next gear in the “gear train” is smaller the range of the
servo is increased

* |If the driven gear has % # of teeth as the servo gear you double

(x2) the range of the servo (now 360 degrees instead of 180
degrees) but with less torque.

Servo gear

driven gear

Professional Development Workshop # B h ll‘”
Page :344 © 1993 — 2024 KIPR Dt a

Resources and Support

Team Home Base
Social Media

T-shirts and Awards
What to do After the Workshop

Professional Development Workshop # B b ll"
Page :345 © 1993 — 2024 KIPR Dt a.

Botball Team Home Base

Found at www.kipr.org

Professional Development Workshop # B b ll°
Page :346 © 1993 — 2024 KIPR Dt a

http://homebase.kipr.org/

Botball Team Home Base

KIPR Support
®* E-mail: support@Kkipr.org
®* Phone: 405-579-4609
® Hours: M-F, 8:30am-5:00pm CT

Forum and FAQ
* Site: www.kipr.org/Botball

¢ Content:

® Botball Curriculum
Botball Challenge Activities
Documentation Manual and Examples
Presentation Rubric & Example Presentation
DemoBot Build Instructions & Parts List
Controller Getting Started Manual
Construction Examples
Hints for New Teams
Game Table Construction Documents
All 2024 Game Documents

Professional Development Workshop # B h ll’”
Page :347 © 1993 — 2024 KIPR Dt a

mailto:support@kipr.org
http://www.kipr.org

Page

Access the Wombat documentation by selecting the Help button in the KISS IDE

€

1
2
3
4
5
6
7
8

@
y

KIPR Software Suite % \ +

(1) | 192.168.125.1:8888/#/apps/kiss?project=My First Project&file=main.c&cat=src c Q search

[] (] 2 & = %
Save main.c File Menu Project Menu Undo Redo Indent Compile My First Project

#include <kipr/botball.h>

int main()

{

printf("Hello World\n");
return

>

Run

My First Project
Source Files

[main.c

~
L>4

Student Name Fol| < 8¢ 22

+ Add Project

1348

Professional Development Workshop
© 1993 — 2024 KIPR

#Botball

Social Media

Botball Educational

Robotics Program @
@BotballRobotics

Home
About ib Liked v X\ Following v A Share
Photos
Reviews About # Edit Page Info
Events W Home & Moments Search Twitter Q Have an account? Log in~
Videos FIND US
Posts <‘> 1818 W Lindsay St Get Directions
Services Norman, Oklahoma r
5 ~ -
Shop ~) m.me/BotballRobotics @ -

R, Call (405) 579-4609

Groups

Tweets Following Followers Likes Lists

/N
4,598 613 1,007 1,234 1 A,

Botguy Tweets Tweets & replies Media New to Twitter?

@BotballRobotics ¥ Pinned Tweet Sign up now to get your own
- 3 Botguy @BotballRobotics - 1 Nov 2018 G personalized timeline!

We engage middle and high school aged

g 2019 #Botball Build is ready for release!!!
students in a team-oriented robotics S *" up
competition, that serves as a perfect way Login to your team resources or register for the 2019 season and get a jump

I A T T G start on your season tablelll kipr.org/botball
standards.

© Norman, OK #esforall #iosdall #edtech #kidscancode #DallasiSD #OKscl #giriscancode #csed ~ You may also like - refresh

Professional Development Workshop # B h ll’”
Page :349 © 1993 — 2024 KIPR Dt a

Social Media

Botball Educational Robotics Program
®y Published by Botball Robotics - November 1, 2018 - Q (9 Botguy @BotballRobotics - 21 Dec 2018 v
"g’a 'M Wishing everyone Happy Holidays from the KIPR team!
2019 #Botball Build is ready for release!!! %
Legin to your team rescurces or register for the 2019 season - -
jump start on this season's table!!! Botball Educational Robotics Program n N
EERW DPublished by Ashley Borgerding (7] - October 6, 2018 - Q B \ :
I S hwww i / i > g -
https://www.kipr.org/botball ... See More Minefaire Botguy Kipr #KIPR #B8otball #JuniorBotballChallenge P g W\
o iRl (N\
® 2 g ‘ %’
Dt a o o : U ;
N 1% .
‘ T af/4dr 727, T /il

Kl rderdere- o y : v,

iy P\VC Build Released \ . ‘ / /

PRACTICAL | IEI PRACTICA ' :

(il on Team Homebase! NORATIC i

i

800 80 PRAC)
People Reached Engagements RUB(

OO’ Cheryl Hays Wegscheid, Maddie Wales and 11 others

o™ Like (J Comment &> Share

Professional Development Workshop # B h lr
Page :350 © 1993 - 2024 KIPR Dt a

o M
o A Bt
‘.1 .

2]
©
S
(O
S
<
o
=
)
£
(O
c
-
=
O
—

#Botball

Professional Development Workshop
© 1993 — 2024 KIPR

:351

Page

Tournament Awards

There are a lot of opportunities for teams to win awards!

®* Tournament Awards
® Qutstanding Documentation
® Seeding Rounds
® Double Elimination
® QOverall (includes Documentation, Seeding, and Double Elimination)

® Judges’ Choice Awards (# of awards depends on # of teams)
® KISS Award
® Spirit of Botball
® Qutstanding Engineering
® Qutstanding Software
® Spirit
® Qutstanding Design/Strategy/Teamwork

Professional Development Workshop # B h ll‘”
Page :352 © 1993 - 2024 KIPR Dt a

What to Do After the Workshop

1. Recruit Team Members

If you haven’t already recruited team members you can use the materials from
the workshop to show to interested students.

Page

Hit the Ground Running

:353

Do not wait to get started—time is of the essence!

You only have a limited build time before the tournament.

The workshop will still be fresh in your mind if you start now.

Plan on meeting sometime during the first week after the workshop.

Professional Development Workshop # B h lr
© 1993 - 2024 KIPR Dt a

What to Do After the Workshop

3. Plan Out the Season

® Students will not inherently know how to manage their time. Let’s face
it—it is difficult for many adults!

®* Mark a calendar or make a Gannt chart with important dates:

®* 1stonline documentation submission due
®* 2nd online documentation submission due
®* 3rd online documentation submission due
®* Tournament date

®* Set dates and schedules for team meetings.
®* Plan on meeting a minimum of 4 hours per week.

Professional Development Workshop # B h lr
Page :354 © 1993 — 2024 KIPR Dt a

What to Do After the Workshop

4. Build the Game Board

®* |f you can’t build the full game board, you can build % of the board.

®* You could tape the outline of the board onto a floor if you have the right
type of flooring.

5. Organize your Botball Kit

®* Organized parts can lead to faster and easier construction of robots.

6. Understand the Game

® Go over this with your students on the first meeting after the workshop.

Professional Development Workshop # B h lr
Page :355 © 1993 - 2024 KIPR Dt a

