
Coding & Autonomous

We program our robot using Java in Android Studio. The three main modules in our

robot’s code are the ​Hardware Map ​which connects software to hardware based on

the Control Hub’s wiring, the ​OpMode​ which assigns inputs from the drivers’

gamepads to actions on the robot, and the ​Autonomous​ segment which navigates the

field to complete tasks without human input. Below is a table summarizing our main

modules and the methods comprising each one.

Hardware6417.java - ​initialize hardware variables, store basic navigation methods

init()
Assign all motors, servos, and sensors to a variable to access

and control throughout the robot’s code

Driver-Controlled methods

shoot() Spin front motor on launching mechanism to shoot rings

intake()
Spin motor controlling intake system and back motor on

launching mechanism to intake and carry wheels

arm() Raise and lower servo arm to grab Wobble Goal

grab() Open and close grabber servo to grip Wobble Goal

setDriveSpeeds() Supply power to drivetrain motors to drive, strafe, and rotate

Autonomous methods

drivetoPosition() Drive forward and backward using encoders

strafetoPosition() Strafe left and right using encoders

stop() Set all drivetrain motors to 0 power

resetAngle() Set current detected angle to 0

getAngle() Get current IMU reading

rotate() Rotate robot using IMU

MecanumDriveOpMode.java - control robot during TeleOp using

gamepads

runOpMode()

Continuously read values from gamepads to control robot motors

and servos

- Gamepad 1: Control robot’s physical position using joysticks

to drive, strafe, and rotate

- Gamepad 2: Control robot’s systems to complete tasks on the

field (picking up wobble goal, taking in and shooting rings)

nudgeRobot()

Power the robot’s drivetrain motors to drive, strafe, and rotate in

tiny amounts—good for navigating tight corners and completing

tasks that require a lot of precision (i.e. picking up Wobble Goal)

Auto6417.java - control robot during TeleOp using gamepads

initTfod()

Initialize TensorFlow object detection engine

- This library provides us with an image recognition model

that allows us to identify objects on the field

initVuforia()

Initialize Vuforia localization engine

- This library allows us to determine the location of different

objects on the field using the webcam

runOpMode()

Run 30-second Autonomous code

1. Move forward and rotate slightly to detect objects

2. Determine whether there is a Quad, Single, or no rings on

field

3. Rotate back to face white line

4. Move forward

5. Shoot pre-loaded rings at Power Shot targets

6. Based on the object detected in Step #2, deposit pre-loaded

Wobble Goal in correct target zone

Autonomous Program Diagrams

Scenario 1: 4 rings detected

1. Move forward ~12 in.; rotate ~5

degrees to detect rings and rotate

back

2. Move forward ~60 in.

3. Shoot rings towards Power Shot

targets

4. Drive forward into wall

5. Move back ~6 in.; rotate 90

degrees; drive forward ~30 in.

6. Deposit Wobble Goal in Target

Zone

7. Move back ~6 in.; strafe for 4

seconds until parked on white line

Scenario 2: 1 ring detected

1. Move forward ~12 in.; rotate ~5

degrees to detect rings and rotate

back

2. Move forward ~60 in.

3. Shoot rings towards Power Shot

targets

4. Drive forward ~60 in.

5. Rotate 90 degrees; drive forward

~30 in.; deposit Wobble Goal in

Target Zone

6. Move back ~6 in.; strafe for 2

seconds until parked on white line

Scenario 3: 0 rings detected

1. Move forward ~12 in.; rotate ~5

degrees to detect rings and rotate

back

2. Move forward ~60 in.

3. Shoot rings towards Power Shot

targets

4. Drive forward ~12 in.; rotate 90

degrees; drive forward ~60 in.

5. Deposit Wobble Goal in Target

Zone

Sensing:

To aid us during autonomous navigation, we use the following sensing techniques:

Encoders

Encoders are sensing devices that detect the status of a motor

based on electrical pulses. Our robot’s motors run on 753.2

pulses per rotation - each time the motor completes one

rotation, the encoder counts 753.2 electrical pulses.

We can tell the robot to drive until it counts a specific number

of pulses - if we want our wheels to complete one half

rotation, we will program the motor to drive until the encoder

counts pulses, or about 377 pulses. Using the2
753.2

circumference of the wheel, we can convert pulses to inches to

drive a specific distance on the field.

Inertial Measurement

Unit (IMU)

The IMU is an internal gyroscope built into the robot’s

Control Hubs. We use the IMU to detect the current

orientation of the robot and rotate specific distances.

In the future, we plan to use the IMU to program

self-correcting driving and strafing - the IMU will detect small

changes in the robot’s orientation while the robot drives, and

we can use this value to supply or subtract power from the

motors to correct the robot’s orientation.

TensorFlow Object

Detection

TensorFlow Object Detection uses a pre-trained machine

learning model to recognize objects through the webcam. We

use this library to detect the number of rings on the field to

determine which target zone to drop the wobble goal.

Aside from those listed above, we’ve experimented with other sensing techniques

throughout the season that didn’t make the final robot, including:

- Vuforia Localization:

- Vuforia localization is used to determine the relative location of objects on

the field using image recognition. Originally we tried using Vuforia

Localization when our camera started detecting random “objects” (i.e. it

thought the red wall was a Quad object)

- We used localization to record objects only within a certain distance and at

a certain angle - if the object was too far away, or if it is not directly in

front of the robot as the object on the field should be, we would ignore the

recognition

- When we repositioned the camera, the image recognition became much

more reliable so we no longer needed localization - we removed

localization from our code for greater efficiency

- Color Sensor:

- We tried implementing a REV Color Sensor to detect luminosity and

recognize white line on the field

- Even after we added the color sensor to our software and hardware map,

the Driver Station couldn’t recognize the color sensor even after we

plugged it in and configured it. We spent some time trying to debug

(swapping out wires, re-configuring, restarting robot) and research and

realized that other teams have encountered this issue as well

- It is suspected to be a glitch in the RobotController Software Development

Kit - there isn’t much we can do about that so we decided not to spend too

much time to add it

- In the future, we hope to add the color sensor back (perhaps using

different hardware, i.e. Modern Robotics color sensor) for an additional

reference point during Autonomous

Development Log:

Below is a table documenting our progress on the robot’s code throughout the season.

We store our code in a GitHub repository which helps us track our development. Anyone

on the team can access the GitHub repository and download the code onto their own

computer. We’ve used GitHub in previous years as well, meaning that we can go back

and reference old code should we decide to implement a similar feature on our current

robot.

Thanks to GitHub version control, we can easily review and restore previous versions of

our robot’s code.

Date Notes

Oct 24, 2020 - Set up Control Hub wi-fi connection

- Connect webcam to control hub

- Upload and test sample webcam program

Nov 14, 2020 - Add drivetrain code for driver control during TeleOp

- Challenges:​ ​adjust weights of robot to ensure that driving

and strafing are straight

Nov 28, 2020 - Add code for shooter

- Test to see which motor strength is optimal for shooting

different goals on the playing field

Dec 5, 2020 - Continued to test shooter code after replacing broken motor

- Finalize optimal powers to launch at specific targets

- robot.shoot(0.85) = best for shooting top slot

- robot.shoot(0.75) = best for shooting Power Shot

pegs

- robot.shoot(0.65) = best for shooting middle slot

Dec 19, 2020 - Add servo code to drop wobble goal

Jan 9, 2021 - Refine TeleOp code for driver convenience as we start to

test more:

- Adjust controls for armServo and grabServo to better grip

and deposit Wobble Goal

- Change setDriveSpeeds so that the left and right joysticks

control the left and right motors of the robot, respectively

- Distribute roles between Gamepad 1 and Gamepad 2:

- Gamepad 1 controls driving and nudging

- Gamepad 2 controls grabber arm, intake, and

shooting

Jan 14, 2021 - Add encoders to drivetrain

- For now, only one encoder - last year we had

problems making sure all of the encoders were

working at once, so this year we’re starting with only

one

- Add methods to drive and strafe with encoders during

autonomous

- Challenges: ​modify motor speeds in order to drive and

strafe straight (weight distribution is still not perfect but at

this point we can’t change the robot structure too much)

Jan 21, 2021 - Add method to rotate using IMU

- Start programming autonomous

- Determine where the robot must drive in order to

accurately identify number of rings

- Too far = cannot recognize

- Too close = rings may not be in the camera frame

- Challenges: ​adding color sensor to detect white line

- RobotController didn’t register color sensor despite

being configured correctly on the hardware map

- Researched problem and eventually realized that

many teams were running into this same issue - must

be a glitch in SDK which we can’t do anything about

- Decided to stop using ColorSensor for now to save

time

Jan 25, 2021 - Test autonomous and complete scored practice rounds

- Max score autonomous: 35

- Challenges: ​trouble recognizing Quad objects

(TensorFlow model will think that a stack of 4 rings is a

single ring)

- Tried modifying position of robot but Quad

recognition is still unreliable—TensorFlow

recognizes single rings and no rings consistently and

sometimes recognizes Quads but usually labels it as a

single

Jan 26, 2021 - Continue testing autonomous - the code itself is mostly

finished but we are having problems with consistency of the

image recognition

- Challenges: ​sometimes the bot will detect a random object

on the field that isn’t there - detects “Single” when it’s really

none; detects three objects when there’s really one object,

etc.

- Figured out a more reliable position to mount the

webcam - we raised it so that it was looking down at

the rings rather than looking up at them

- Less interference from background - higher

contrast when it’s only looking at grey field +

bright yellow rings

Jan 27, 2021 - Finalize tweaks to autonomous

- Mainly just adjusting distances so that the robot

more reliably parks + deposits + shoots

- Challenges: ​Varying battery levels changes the robot’s

behavior slightly (i.e. supplies less power to motors while

shooting = rings are shot a little low if the battery is low);

solution was to create multiple versions of autonomous with

tiny changes to take into account state of robot’s battery

Present - Continuing to test and refine autonomous

