
Professional Development Workshop
© 1993 – 2019 KIPR1Page : #

Before we get started…
1. Sign in, and collect the workshop materials and electronics.

2. KIPR staff may come around and install/copy files as needed.

3. Charge the Wallaby batteries: WHITE to WHITE (refer to next slide)

4. Open the “2019 Parts List” folder, which contains files that list all of the Botball
robot kit components. Please go through the lists and verify that everything has
been received.

5.Go through the team packet.

6. Review slides 2-31.
7. Build the non-Create DemoBot.

Welcome to Botball 2019!

Raise your hand if you need help or have questions.

KIPR Robotics
Controller - Wallaby

Professional Development Workshop
© 1993 – 2019 KIPR2Page : #

• For charging the controller’s battery, use only the power
supply which came with the controller.
• It is possible to damage the battery

by using the wrong charger or

excessive discharge!

• The standard power pack is a lithium iron
(LiFe) battery, a safer alternative to lithium polymer
batteries. The safety rules applicable for recharging any
battery still apply:
• Do NOT leave the battery unattended while charging.

• Charge in a cool, open area away from flammable materials.

Charging the Controller’s Battery

Professional Development Workshop
© 1993 – 2019 KIPR3Page : #

Making the Connection

All connections are as follows:

• Yellow to Yellow (battery to controller)

• White small to White small (charger to battery)
• The charger may vary slightly, use caution unplugging

• Black to Black (motors, servos, sensors)

Professional Development Workshop
© 1993 – 2019 KIPR4Page : #

KRC Wallaby Controller Guide

2 Servo
Motor Ports

(Port # 0 & 1)
2 Motor Ports
(Port # 0 & 1)

10 Digital
Sensor Ports
(Port # 0 - 9)

6 Analog
Sensor Ports
(Port # 0 - 5)

2 Motor Ports
(Port # 2 & 3)

2 Servo
Motor Ports

(Port # 2 & 3)

Color Touch Screen

KIPR Robotics Controller
Wallaby

Power Switch

USB

Micro HDMI

Power (external battery
connection)

Download port
(micro USB)

Professional Development Workshop
© 1993 – 2019 KIPR5Page : #

• The KIPR Robotics Controller – Wallaby, uses an external battery
pack for power.
• It will void the warranty to use a battery pack with the Wallaby that

hasn’t been approved by KIPR.

• Make sure to follow the shutdown instruction on the next slide.
Failure to do so will drain the battery to the point where it can
no longer be charged. If the blue lights continues to flash when
the battery is plugged into the charger, then it was probably
drained to the point where it cannot be charged again. A
replacement battery can be purchased from www.KIPR.org

Wallaby Power

http://www.kipr.org/

Professional Development Workshop
© 1993 – 2019 KIPR6Page : #

• From the Wallaby Home Screen press Shutdown
• Select Yes

• Go to the Wallaby screen and check to see if it is
halted
• If the Wallaby shows shutdown failed, then rerun the last program

either to completion or just start and stop it. This should allow the
Wallaby to shut down.

• Slide the power switch to off AND unplug the
battery, using the yellow connectors, being careful
not to pull on the wires

Wallaby Power Down

Professional Development Workshop
© 1993 – 2019 KIPR7Page : #

Build the robot using the DemoBot Building Guide
This can be found from the provided materials. Also accessible via the

Team Homebase:
www.KIPR.org/Botball -> Team Resources -> Team Homebase

Build the DemoBots

*Must be logged into the Botball team account to view the Team Homebase.

Professional Development Workshop
© 1993 – 2019 KIPR8Page : #8Page :

Botball 2019
Professional Development Workshop

Prepared by the KISS Institute for Practical Robotics (KIPR)

with significant contributions from KIPR staff

and the Botball Instructors Summit participants

V2019

Hi! I’m Botguy, the Botball mascot!

Professional Development Workshop
© 1993 – 2019 KIPR9Page : #

KIPR’s mission is to:
• Improve the public’s understanding of science, technology, engineering, and math;

• Develop the skills, character, and aspirations of students; and

• Contribute to the enrichment of our school systems, communities, and the nation.

Thank You for Participating!
We couldn’t do it without you!

Professional Development Workshop
© 1993 – 2019 KIPR10Page : #

• Introductions: workshop staff and volunteers

• Bathrooms

• Food: lunch is on your own

• Workshop schedule: 2 days

Housekeeping

Professional Development Workshop
© 1993 – 2019 KIPR11Page : #

Day 1 Day 2

• Botball Game Review

• Starting with a Light

• Tournament Code Template

• More Variables and Functions with Arguments

• Moving the iRobot Create: Part 1

• Moving the iRobot Create: Part 2

• iRobot Create Sensors

• Color Camera

• Logical Operators

• Resources and Support

Workshop Schedule

• Botball Overview

• Getting started with the KIPR Software Suite

• Explaining the “Hello, World!” C Program

• Designing A Program

• Moving the DemoBot with Motors

• Moving the DemoBot Servos

• Making Smarter Robots with Sensors

• Introduction to while Loops

• Measuring Distance

• Motor Position Counter

• Fun with Functions

• Making a Choice

• Line-following

• Homework

Professional Development Workshop
© 1993 – 2019 KIPR12Page : #

Thanks to our National Sponsors!

Professional Development Workshop
© 1993 – 2019 KIPR13Page : #

Join Us Online!

To be filled in by Annie

Professional Development Workshop
© 1993 – 2019 KIPR14Page : #

Thanks to our Regional Hosts!

Professional Development Workshop
© 1993 – 2019 KIPR15Page : #15Page :

Botball Overview

What and When?

GCER and ECER

Preview of this year’s game

Homework for tonight

Professional Development Workshop
© 1993 – 2019 KIPR16Page : #

• Produced by the KISS Institute for Practical Robotics (KIPR), a
non-profit organization based in Norman, OK.

• Engages middle and high school aged students in a team-oriented
robotics competition based on national education standards.

• By designing, building, programming, and documenting robots,
students use science, technology, engineering, math, and writing
skills in a hands-on project that reinforces their learning.

What is Botball?

Professional Development Workshop
© 1993 – 2019 KIPR17Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL Jan. – Mar. 7 – 9 Weeks Mar. – Jun. July

• Prof. Dev. workshops.

• Design, build, & program
autonomous robots.

• Document process online.

• Regional tournaments.

• Global Conference on
Educational Robotics.

• International Botball.

2019 2020

Professional Development Workshop
© 1993 – 2019 KIPR18Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL 7 – 9 Weeks Mar. – Jun. July

• Design, build, & program
autonomous robots.

• Document process online.

• Regional tournaments.

• Global Conference on
Educational Robotics.

• International Botball.

2019 2020

• Provides the skills and tools necessary to compete in the tournament.

• Teams will learn to program robots, and will leave with working systems.

• Skills and tools/equipment are kept and are reusable outside of Botball.

• Not a standalone curriculum! Goal is to support team success in Botball!

(For building and programming resources, visit the Team Home Base.)

WE ARE HERE!

Jan. – Mar.

• Prof. Dev. workshops.

https://www.kipr.org/botball/team-resources/botball-team-homebase

Professional Development Workshop
© 1993 – 2019 KIPR19Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL Jan. – Mar. 7 – 9 Weeks Mar. – Jun. July

• Prof. Dev. workshops.

• Design, build, & program
autonomous robots.

• Document process online.

• Regional tournaments.

• Global Conference on
Educational Robotics.

• International Botball.

2019 2020

• Reinforces computational thinking and the engineering design process.

• Teams must submit three online project documents, which count for points.

• Online support throughout the season from KIPR and other Botball teams.

Professional Development Workshop
© 1993 – 2019 KIPR20Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL 7 – 9 Weeks July

• Design, build, & program
autonomous robots.

• Document process online.

• Global Conference on
Educational Robotics.

• International Botball.

2019 2020

• Practice: teams test and calibrate robot entries on the official game boards

• Seeding rounds: teams compete against the task to score the most points

• Double elimination (DE) rounds: teams compete head-to-head

• Alliance matches: teams eliminated in DE pair up to score points together

• Onsite documentation: 8-minute technical presentation to judges

Jan. – Mar.

• Prof. Dev. workshops.

Mar. – Jun.

• Regional tournaments.

Professional Development Workshop
© 1993 – 2019 KIPR21Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL 7 – 9 Weeks July

• Design, build, & program
autonomous robots.

• Document process online.

• Global Conference on
Educational Robotics.

• International Botball.

2019 2020

• International Botball Tournament: all teams are invited to participate

• Paper presentations: students may submit and present papers at GCER

• Guest speakers: presentations from academic and industry leaders

• Autonomous showcase: students display projects in a science fair style

Global Conference on Educational Robotics (GCER)

EVERYONE IS ELIGIBLE!

Jan. – Mar.

• Prof. Dev. workshops.

Mar. – Jun.

• Regional tournaments.

Professional Development Workshop
© 1993 – 2019 KIPR22Page : #

• Norman, Oklahoma
• July 7-11, 2019
• International Botball Tournament
• Autonomous Robotics Showcase
• Autonomous Aerial Tournament
• International Junior Botball Challenge

GCER 2019

www.KIPR.org

• Meet and network with students
from around the country and world

• Talks by internationally recognized
robotics experts

• Teacher, student, and peer
reviewed track sessions

Global Conference on Educational Robotics

http://www.kipr.org/gcer

Professional Development Workshop
© 1993 – 2019 KIPR23Page : #

GCER 2019

Global Conference on Educational Robotics

Autonomous Aerial Robot
Competition & Challenges

Preconference classes on July 6th

International Junior Botball Challenge

Preconference Workshops

Professional Development Workshop
© 1993 – 2019 KIPR24Page : #

ECER 2019

European Conference on Educational Robotics

• Vienna, Austria
• April 8-12, 2019

• European Botball Competition
• Talks by Researchers and Students

Professional Development Workshop
© 1993 – 2019 KIPR25Page : #

2019 Botball Theme

Botguy Directs Disaster Relief Efforts

Disaster has struck Botguy’s home in the form of a massive storm! Lightning
has started numerous structure fires and flooding has left citizens of Botopia
stranded. High winds and isolated tornadoes have caused damage to structures
resulting in widespread power outages and serious natural gas leaks. Your team
must work with Botguy and the Mayor of Botopia in the Disaster Relief Zone to
ensure that emergency vehicles and personnel are dispatched to fight fires and
rescue citizens. Transport the Injured Citizens to the hospital to receive much
needed treatment and Uninjured Citizens should be taken to the Disaster Relief
Zone. Get your firefighters to the buildings that are on fire and douse those
buildings with water. Assist the utility crews by shutting off the natural gas and
restore electrical service to the downtown area. Water, Food, and Medical
Supplies need to be collected and taken to the Disaster Relief Zone and Medical
Complex. Now hurry and save the city!

Professional Development Workshop
© 1993 – 2019 KIPR26Page : #

Botball Game Board

Professional Development Workshop
© 1993 – 2019 KIPR27Page : #

Review the game rules on the Team Home Base

• We will have a 30-minute Q&A session tomorrow.

• After the workshop, ask questions about game rules in
the Game Rules FAQ.
• Everyone should regularly visit this forum.

• Everyone will find answers to the game questions there.

Homework for Tonight

Professional Development Workshop
© 1993 – 2019 KIPR28Page : #

Botball Team Home Base

Found at www.KIPR.org

Professional Development Workshop
© 1993 – 2019 KIPR29Page : #

Botball Team Home Base

Found at www.KIPR.org

Professional Development Workshop
© 1993 – 2019 KIPR30Page : #

Botball Team Home Base

Found at www.KIPR.org

Professional Development Workshop
© 1993 – 2019 KIPR31Page : #

Hold questions until tomorrow! Game Q&A is tomorrow!

Preview of this Year’s Botball Game

Professional Development Workshop
© 1993 – 2019 KIPR32Page : #32Page :

Getting Started with the KIPR Software Suite

What is a programming language?

How can I create new projects and files?

How can I write and compile source code?

How can I run programs on the KIPR Wallaby?

Professional Development Workshop
© 1993 – 2019 KIPR33Page : #

• Computers only understand machine language (stream of bytes),
which computers can read and execute (run).

• Unfortunately, humans don’t speak machine language…

What is a Programming Language?

Human Computer

Blah! Blah!

Blah! Blah!

??

?

Professional Development Workshop
© 1993 – 2019 KIPR34Page : #

• Humans have created programming languages that allow them (humans) to
write “source code” that is easier for them (humans) to understand.

• Source code is compiled (translated) by a compiler (part of the KIPR Software
Suite) into machine language so that the computer can read and execute (run)
the code.

• Programming languages have funny names (C, C++, Java, Python, …)

What is a Programming Language?

Programming
Language

Compiler

Translates

Machine
Language

Human Computer

Professional Development Workshop
© 1993 – 2019 KIPR35Page : #

• Connect the Wallaby to a device via Wi-Fi

• This is great at home or School

• Not recommended at Large Workshops or any Tournament

1. Turn on the Wallaby with the black switch on the side. After turning on,
wait at least 3-7 minutes for Wallaby to completely boot. Skipping this
step frequently results in connection issues.

2. Click the About button (top left of screen) and use the Wallaby SSID and
Password to connect to it via Wi-Fi.

Connect the Wallaby to the Computer,
Smart Phone or Tablet at School

Professional Development Workshop
© 1993 – 2019 KIPR36Page : #

1. Launch a web browser such as Chrome or Firefox (Internet
Explorer will not work) and power up the Wallaby. Connect to
the Wallaby via Wi-Fi.

2. Copy this IP address into the browser’s address bar followed by
“:” and port number 8888; e.g.,

192.168.125.1:8888

3. The user interface for the package will now load in the browser.
a. Note: during competitions use the USB cable connection. Use IP address

and port: 192.168.124.1:8888

4. A computer, tablet or even a smart phone can be used to
interface with the Wallaby.

Loading the Starting Web Page (Wi-Fi)

IP address Port #

Professional Development Workshop
© 1993 – 2019 KIPR37Page : #

Connection

When connected to the Wallaby, the device
may give various errors; “no internet
connection” or “connected with limited”

This is normal. Proceed with opening a

browser and connecting to the KISS IDE.

Professional Development Workshop
© 1993 – 2019 KIPR38Page : #

Connection Issues

Connected

Not Connected

The device may disconnect from the Wallaby.
This is evident when trying to compile and
the button does not turn red (nothing
happens).

In the bottom right corner of the KIPR IDE
there is an icon that shows if the device is still
connected to the Wallaby.

Professional Development Workshop
© 1993 – 2019 KIPR39Page : #

• Connect the Wallaby to the device using USB Cable
1. Plug battery into Wallaby- YELLOW TO YELLOW.

2. Turn on the Wallaby with the black switch on the side

3. Once the Wallaby has booted, the Wallaby will appear in the list of
available Ethernet connections for the device.

4. If there is a message about the driver raise your hand for help or go to the
team home base: Troubleshooting->USB driver for instructions

Connect the Wallaby to the device
at Workshop and Tournament

Insert the micro-
USB end here

Attach the
regular USB end

to computer

Professional Development Workshop
© 1993 – 2019 KIPR40Page : #

1. Launch the web browser (such as Chrome or Firefox, but not
Internet Explorer) and power up the Wallaby.

2. Copy this IP address into the browser’s address bar followed by
“:” and port number 8888; e.g.,

192.168.124.1:8888

a. Note that USB cable IP address is 192.168.124.1:8888

3. The user interface for the package will now come up in the
browser.

4. Test this at the workshop at least once.

a. See Team Resources -> Botball Team Homebase -> Connecting with USB
Cable

Loading the Starting Web Page (USB)

IP address Port #

Professional Development Workshop
© 1993 – 2019 KIPR41Page : #

To make it easier to learn and
use a programming language,
KIPR provides a web-based
Software Suite which allows
writing and compiling source
code using the C programming
language.

The development package will
work with almost any web
browser except Internet
Explorer.

Using the KIPR Integrated Development
Environment (IDE)

Professional Development Workshop
© 1993 – 2019 KIPR42Page : #

1. Click on the KISS IDE button.

NOTE: The buttons might be in different locations depending on device type.

Creating a Project

Professional Development Workshop
© 1993 – 2019 KIPR43Page : #

1. Add a new user folder by clicking the + sign in
the Project Explorer.

2. Name the new user folder with the student’s
name to help organization. All of the different
projects will go into this user folder.
*No special characters allowed in name.

Creating a User Folder

Student Name

3. Click Create to complete.

Professional Development Workshop
© 1993 – 2019 KIPR44Page : #

Creating a Project

1. Go back to Project Explorer and select the User
Name created from the drop down.

2. Click +Add Project. This adds a project to the
folder.

Professional Development Workshop
© 1993 – 2019 KIPR45Page : #

1. Give the project a descriptive name
• Note: there might be a lot of student’s projects, so consider using

student’s first names followed by the name of the activity.

• No special characters allowed in name. (For example: */#@%$.)

2. Press the Create button

Creating a Project

Professional Development Workshop
© 1993 – 2019 KIPR46Page : #

1. Click the Compile button for the project and, if successful
(compilation succeeded), click Run to execute the project to see
if it works.

NOTE: When compiling the project it is automatically saved.

Compile and Run a Project

Professional Development Workshop
© 1993 – 2019 KIPR47Page : #

Running Program from Robot

Highlight program and then press run

Professional Development Workshop
© 1993 – 2019 KIPR48Page : #

Note: one project = one program.

• Click the + Add Project button or click the Menu button to return

to the starting menu.

• Proceed as before.

• The Project Explorer panel will show all of the user folder

projects and actively edited files.

Starting Another Project

Professional Development Workshop
© 1993 – 2019 KIPR49Page : #49Page :

Explaining the “Hello, World!” C Program

Program flow and the main function

Programming statements and functions

Comments

Professional Development Workshop
© 1993 – 2019 KIPR50Page : #

“Hello, World!”

Note: We will use this template
every time; we will delete lines

we don’t want, and we will
add lines that we do want.

Professional Development Workshop
© 1993 – 2019 KIPR51Page : #

Program Flow and Line Numbers

End

Begin

Print "Hello, World!"

Return 0

Top

Bottom

Computers read a program just like humans read a book—
they read each line starting at the top and go to the bottom.

Computers can read incredibly quickly—
Millions of lines per second!

Professional Development Workshop
© 1993 – 2019 KIPR52Page : #

Source Code

This is the source code for our first C program.

Let’s look at each part of the source code.

Professional Development Workshop
© 1993 – 2019 KIPR53Page : #

The main() Function

// Created on Thu January 10 2019

int main()

{

printf("Hello, World!\n");

return 0;

}

This is the main() function.

When running the program,
the main function is executed.

A C program must have
exactly one main() function.

A function defines a list of actions to take.
A function is like a recipe for baking a cake.

When a function is called (used),
the program follows the instructions and bakes the cake.

Professional Development Workshop
© 1993 – 2019 KIPR54Page : #

Block of Code

// Created on Thu January 10 2019

int main()

{

printf("Hello, World!\n");

return 0;

}

Begin

End

This is a block of code.

A block of code should
always be preceded by
a block header, which is
the line just before the {A block is defined between a

beginning curly brace { and an
ending curly brace }

The list of actions that the function performs is defined inside a
block of code.

Block Header

Professional Development Workshop
© 1993 – 2019 KIPR55Page : #

Programming Statements

// Created on Thu January 10 2019

int main()

{

printf("Hello, World!\n");

return 0;

}

Inside the block of code
(between the { and } braces),
we write lines of code called
programming statements.

Each programming statement
is an action to be executed by
the computer (or robot)
in the order that it is listed.

There can be any number of
programming statements
within a block of code.

Statement #1 →
Statement #2 →

Professional Development Workshop
© 1993 – 2019 KIPR56Page : #

Use this cheat/hint sheet as an easy reference.

Copying and pasting code is also very helpful.

KIPR Wallaby functions hint sheet

printf("text\n"); // Prints the specified text to the screen

msleep(# milliseconds); // Another name for wait_for_milliseconds (identical)

motor(port #, % velocity); // Turns on motor with port # at specified % velocity

motor_power(port #, % power); // Turns on motor with specified port # at specified % power

mav(port #, velocity); // Move motor at specified velocity (# ticks per second)

mrp(port #, velocity, position); // Move motor to specified relative position (in # ticks)

ao(); // All off; turns all motor ports off

enable_servos(); // Turns on servo ports

disable_servos(); // Turns off servo ports

set_servo_position(port #, position); // Moves servo in specified port # to specified position

wait_for_light(port #); // Waits for light in specified port # before next line

wait_for_touch(port #); // Waits for touch in specified port # before next line

analog(port #) // Get a sensor reading from a specified analog port #

digital(port #) // Get a sensor reading from a specified digital port #

shut_down_in(time in seconds); // Shuts down all motors after specified # of seconds

Professional Development Workshop
© 1993 – 2019 KIPR57Page : #

Ending a Programming Statement

// Created on Thu January 10 2019

int main()

{

printf("Hello, World!\n");

return 0;

}

Each programming statement
ends with a semicolon ;
(unless it is followed by a new
block of code).

This is similar to an English sentence, which ends with a period.

If an English sentence is missing a period, then it is a run-on sentence.

Professional Development Workshop
© 1993 – 2019 KIPR58Page : #

Ending the main Function

// Created on Thu January 10 2019

int main()

{

printf("Hello, World!\n");

return 0;

}

The main function ends with a
return statement, which is a
response or answer to the
computer (or robot).

In this case, the “answer” back
to the computer is 0.The return statement is

generally the last line before
the } brace.

Professional Development Workshop
© 1993 – 2019 KIPR59Page : #

Comments

// Created on Thu January 10 2019

int main()

{

printf("Hello, World!\n");

return 0;

}

The green text at the top of the program is called a “comment”.

Comments are helpful notes
that can be read by the
programmer or other
programmers. They are
ignored (not read) by the
compiler!

Professional Development Workshop
© 1993 – 2019 KIPR60Page : #

The KISS IDE highlights parts of a program to make it easier to read.
(By default, the KISS IDE colors the code and adds line numbers.)

• Includes in purple

• Comments in green

• Text strings appear in red

• Keywords appear in blue

Text Color Highlighting

Professional Development Workshop
© 1993 – 2019 KIPR61Page : #

Description: Write a program for the KIPR Wallaby that prints your name.

Solution:

Print Your Name

int main()

{

// 1. Print your name.

printf("Botguy\n");

// 2. End the program.

return 0;

}

Source Code Flowchart

STOP

START

Print your name.

Return 0

Professional Development Workshop
© 1993 – 2019 KIPR62Page : #62Page :

Designing a Program

Breaking Down a Task

Pseudocode, Flowcharts, and Comments

msleep() Function

Debugging a Program

Professional Development Workshop
© 1993 – 2019 KIPR63Page : #

• Break down the objectives (complex tasks) into smaller objectives
(simple subtasks).

• Break down the smaller tasks into even smaller tasks.
Continue this process until each subtask can be accomplished by a
list of individual programming statements.

• For example, the larger task might be to make a PB&J Sandwich
which has smaller tasks of getting the bread and PB&J ready and
then combining them.

Complex Tasks → Simple Subtasks

Professional Development Workshop
© 1993 – 2019 KIPR64Page : #

Description: Write a program for the KIPR Wallaby that prints "Hello,
World!” on one line, and then prints your name on the next line.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Print “Hello, World!” // 1. Print "Hello, World!"

2. Print your name. // 2. Print your name.

3. End the program. // 3. End the program.

Practice Printing

Begin

Print “Hello, World!”

Print your name.

End

Return 0

Flowchart

In English,
write a list of actions
to solve an activity.

These are three different
ways to do this.

Professional Development Workshop
© 1993 – 2019 KIPR65Page : #

Solution: Create a new project, create a new file, and enter the
pseudocode and source code in the main function.
• Note: remember to give the project and file descriptive (unique) names!

Execution: Compile and run the program on the KIPR Wallaby.

Practice Printing

1. Print "Hello, World!"
2. Print your name.
3. End the program.

Pseudocode
int main()

{

printf("Hello, World!\n");

printf("Botguy\n");

return 0;

}

Source Code

Helps to write
the real code!

Professional Development Workshop
© 1993 – 2019 KIPR66Page : #

Reflection: What was noticed after running the program?

• The Wallaby reads code and goes to the next line faster than a blink of an eye.

• At 800MHz, the Wallaby is executing millions of lines of code per second!

• To control a robot, sometimes it is helpful to wait for some duration of time
after a function has been called so that it can actually run on the robot.

• To do this, we use the built-in function called msleep()

Practice Printing

Let’s use this!

Professional Development Workshop
© 1993 – 2019 KIPR67Page : #

Description: Write a program for the KIPR Wallaby that prints "Hello,
World!" on one line, waits two seconds, and then prints your name
on the next line.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Print “Hello, World!” // 1. Print "Hello, World!"

2. Wait for 2 seconds. // 2. Wait for 2 seconds.

3. Print your name. // 3. Print your name.

4. End the program. // 4. End the program.

Waiting for Some Time

Begin

Print “Hello, World!”

Wait for 2 seconds.

Print your name.

End

Return 0

Flowchart

New!

Professional Development Workshop
© 1993 – 2019 KIPR68Page : #

Solution: Create a new project, create a new file, and enter the
pseudocode and source code in the main function.
• Note: remember to give the project and file descriptive (unique) names!

Execution: Compile and run the program on the KIPR Wallaby.

Waiting for some time

1. Print "Hello, World!"
2. Wait for 2 seconds.
3. Print your name.
4. End the program.

Pseudocode int main()

{

printf("Hello, World!\n");

msleep(2000);

printf("I’m Botguy\n");

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR69Page : #

Reflection: What was noticed after running the program?

• Did the code work the first time?

• Were there any errors?

Waiting for Some Time

Professional Development Workshop
© 1993 – 2019 KIPR70Page : #

!!! ERROR !!!

• Not following the rules of the programming language will result in
the compiler getting confused and not being able to translate the
source code into machine code—it will say “Compile Failed!”

• The Wallaby will try to identify where it thinks the error is located.

• The process of trying to resolve this error is called “debugging”.

• To test this, remove a ; from one of the programs and compile it.

• Try removing a " from one of the printf() statements.

• What happens if msleep()is written as Msleep()?

Debugging Errors

Professional Development Workshop
© 1993 – 2019 KIPR71Page : #

Debugging Errors

line # : col # (the error is on or before line # 6)

“ expected ; ” (semicolon)

When there is an error, generally ignore the first error
line (“In function 'main'”) and read the next to see
what the first error is. If there are a lot of errors, start
fixing them from the top going down. Fix one or two and
recompile.

Professional Development Workshop
© 1993 – 2019 KIPR72Page : #72Page :

Moving the DemoBot with Motors

Plugging in motors (ports and direction)

motor() functions

Professional Development Workshop
© 1993 – 2019 KIPR73Page : #

• To program the robot to move, determine which motor
ports the motors are plugged into.

• Computer scientists tend to start counting at 0, so the
four motor ports are numbered 0, 1, 2, and 3.

Check the Robot’s Motor Ports

Professional Development Workshop
© 1993 – 2019 KIPR74Page : #

Wallaby Motor Ports

Motor Ports 0 & 1

Motor Labels are
on the Case

Motor Ports 2 & 3

Professional Development Workshop
© 1993 – 2019 KIPR75Page : #

• Motors have red wire and a black wire with a two-prong plug.

• The Wallaby has 4 motor ports numbered 0 & 1 on left, and 2 & 3 on right.

• When a port is powered (receiving motor commands), it has a light that glows
green for one direction and red for the other direction.

• Plug orientation order determines motor direction.

• By convention, green is forward (+) and red is reverse (−)
• Unless the motors are plugged in “backwards”.

Plugging in Motors

Drive motors have
a two-prong plug.Motor Port #3

Motor Port #2

Professional Development Workshop
© 1993 – 2019 KIPR76Page : #

Plugged in Motors

DemoBot Motor Ports 0 (right wheel) and 3 (left wheel)

Professional Development Workshop
© 1993 – 2019 KIPR77Page : #

The motors should be going in the same direction;
otherwise, the robot will go in circles!

• Motors have a red wire and a black wire with a two-prong plug.

• These can be plugged in two different ways:
• One direction is clockwise, and the other direction is counterclockwise.

• The red and black wires help determine motor direction.

Motor Direction

1 2 2 1

Professional Development Workshop
© 1993 – 2019 KIPR78Page : #

There is an easy way to check this!
• Manually rotate the tire to see an LED light up by the motor port

(the port # is labeled on the board).

• If the LED is green, it is going forward (+).

• If the LED is red, it is going reverse (−).

• Use this trick to check the port #’s and direction of the motors.

• If one is red and the other is green,
turn one motor plug 180° and plug it back in.

• The lights should both be green if the robot is moving forward.

Motor Port and Direction Check

Professional Development Workshop
© 1993 – 2019 KIPR79Page : #

Use the Motor Widget

Professional Development Workshop
© 1993 – 2019 KIPR80Page : #

There are several functions for motors.
We will begin with motor().

motor(0, 100);

// Turns on motor port #0 at 100% power.

// Power should be between -100% and 100%.

msleep(# milliseconds);

// Wait for the specified amount of time.

ao();

// Turn off all of the motors.

Common Motor Functions

Motor port #
(between 0 and 3)

A positive number should drive
the motor forward; if not,

rotate the motor plug 180°.

A negative number should
drive the motor reverse.

If two drive motors are plugged
in in opposite directions from
each other, then the robot will

go in a circle.

Professional Development Workshop
© 1993 – 2019 KIPR81Page : #

Description: Write a program for the KIPR Wallaby that drives the
DemoBot forward at 80% power for two seconds, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Drive forward at 80%. // 1. Drive forward at 80%.

2. Wait for 2 seconds. // 2. Wait for 2 seconds.

3. Stop motors. // 3. Stop motors.

4. End the program. // 4. End the program.

Moving the DemoBot

Begin

Drive forward at 80%.

Wait for 2 seconds.

Stop motors.

End

Return 0

Flowchart

Professional Development Workshop
© 1993 – 2019 KIPR82Page : #

Solution: Create a new project, create a new file, and enter the
pseudocode (as comments) and source code in the main function.
• Note: remember to give the project and file descriptive, unique names!

Execution: Compile and run the program on the KIPR Wallaby.

Moving the DemoBot

1. Drive forward at 80%.
2. Wait for 2 seconds.
3. Stop motors.
4. End the program.

Pseudocode
#include <kipr/botball.h>

int main()

{

//forward

motor(0, 80);

motor(3, 80);

msleep(2000);

ao();

return 0;

}

Source Code

Moves robot

forward

Professional Development Workshop
© 1993 – 2019 KIPR83Page : #

Remember the # line:
positive numbers (+) go forward and negative numbers (−) go in reverse.

Driving straight: it is surprisingly difficult to drive in a straight line…
• Problem: Motors are not exactly the same.
• Problem: The tires might not be aligned perfectly.
• Problem: One tire has more resistance.
• Solution: Adjust this by slowing down or speeding up the motors.

Making turns:
• Solution: Have one wheel go faster or slower than the other.
• Solution: Have one wheel move while the other one is stopped.
• Solution: Have one wheel move forward and the other wheel move in reverse

(friction is less of a factor when both wheels are moving).

Robot Driving Hints

And many, many
other reasons…

Reverse Forward

Professional Development Workshop
© 1993 – 2019 KIPR84Page : #

Moving the DemoBot

Task #1: Place a 2” foam block on circle 6 of Mat A. Write a program that will

drive the DemoBot from the start box towards the can, touch it without

knocking it over or pushing it outside of the circle. The drive back to the start

box.

Task #2: Place a 2” foam block on circle 6 of Mat A. Write a program that will

drive the DemoBot from the start box around the can without touching it, and

then drive back to the start box.

Professional Development Workshop
© 1993 – 2019 KIPR85Page : #

Bulldozing

Attach the bulldozer blade to back of the robot as shown.

Use the 3x11 hole channel.

Professional Development Workshop
© 1993 – 2019 KIPR86Page : #

Connections to the Game Board

Description: Build and attach a custom piece to the DemoBot build that will

allow the robot to successfully bulldoze game pieces to specified areas on

the mats.

Goal #1: Mat A - Stack poms in piles of 4, 3 as a base and 1 on top. Starting

in the start box, bulldoze the stacks of poms from circle 3 into the blue

garage. Robot or game pieces may not cross solid lines of targeted garage.

Bonus: Starting in the start box, bulldoze the stacks of poms from circles 3

and 10 into the yellow garage.

Goal #2: Mat B – Set four groups of two 1” cubes along the blue dotted line,

evenly spread from the start line to the top curve of the black line. Starting

behind the start line, bulldoze the blocks so that none are left touching the

blue line. Bonus: Starting behind the start line, bulldoze the blocks from the

blue dotted line, so that they end completely outside the perimeter of the

black line.

Professional Development Workshop
© 1993 – 2019 KIPR87Page : #87Page :

Moving the DemoBot Servos

Plugging in servos (ports)

enable_servos() and disable_servos() functions

set_servo_position() function

Professional Development Workshop
© 1993 – 2019 KIPR88Page : #

• A servo motor (or servo for short) is a motor that rotates to a specified
position between ~0° and ~180°.

• Servos are great for raising an arm or closing a claw to grab something.

• Servo motors look very similar to non-servo motors, but there are differences…

• A servo has three wires (orange, red, and brown) and a black plastic plug.

• A non-servo motor has two gray wires and a two-prong plug.

Servos

Micro ServoLarge Servo

Professional Development Workshop
© 1993 – 2019 KIPR89Page : #

KIPR Robotics Controller Servo Ports

Servo Ports 0 & 1 Servo Ports 2 & 3

Professional Development Workshop
© 1993 – 2019 KIPR90Page : #

• The KIPR Robotics Controller has 4 servo ports numbered 0 (left) & 1 (right) on
the left, and 2 (left) & 3 (right) on the right.

• Notice that the case of the KIPR Robotics Controller is marked:

• (S) for the orange (signal) wire, which regulates servo position

• (+) for the red (power) wire

• (−) for the brown (ground) wire (“the ground is down, down is negative”)

Plugging in Servos

(S) signal wire
(+) power wire
(–) ground wire

Servo Port #3
Servo Port #2 NOTICE:

orientation
plugging in the
servos is very
important

Professional Development Workshop
© 1993 – 2019 KIPR91Page : #

0

1024

2047

1900150

• Think of a servo like a protractor…
• Angles in the ~180° range of motion (between ~0° and ~180°) are divided

into 2048 servo positions.

• These 2048 positions range from 0 to 2047, but due to internal mechanical
hard stop variability ~150 to ~1900 should be used

(remember: computer scientists start counting with 0, not 1).

• This allows for greater precision when setting a position
(there are ~2048 different positions to choose from instead of just 180).

• The default position is 1024
(centered).

Servo Positions

Professional Development Workshop
© 1993 – 2019 KIPR92Page : #

Use the Servo Widget

Professional Development Workshop
© 1993 – 2019 KIPR93Page : #

Testing Servos with the Widget

Select the
servo port

The current
servo position

Enable
servos

Professional Development Workshop
© 1993 – 2019 KIPR94Page : #

Testing Servos with the Widget

Servo @ 2047
(maxed out)

Servo @ 1513 Servo @ 537

Use a finger
to move the dial.

Do not push a servo beyond its limits
(less than ~150 or more than ~1900).
This can burn out the servo motor!

Professional Development Workshop
© 1993 – 2019 KIPR95Page : #

Centering the Servo Horn

1024

The Servo motor only has a range of motion (rotates) ~180 degrees,

but this cannot be seen by looking at the motor where this range of

motion is located in relation to the robot

Using the Servo Widget, enable the servo on the robot. When it is

enabled, it will go to 1024. Unscrew the servo horn on the arm or

claw and place it in the center of the rotation if it is not already in the

correct position.

Professional Development Workshop
© 1993 – 2019 KIPR96Page : #

• To help save power, servo ports by default are not active until they are
enabled.

• Functions are provided for enabling or disabling all servo ports.

• A function is also provided for setting the position of a servo.

enable_servos(); // Enable (turn on) all servo ports.

set_servo_position(0, 925); // set servo on port #0 to position 925.

disable_servos(); // Disable (turn off) all servo ports.

• Note: it takes the servo time to move to a position so if it is set to another position
without giving it time the code runs very fast and does not wait for the servo to move.

• A servo position can be “preset” by calling set_servo_position() before calling
enable_servos(). This will make the servo move to this position immediately upon
calling enable_servos().

Servo Functions

Professional Development Workshop
© 1993 – 2019 KIPR97Page : #

Using Servo Functions

int main()

{

enable_servos();

set_servo_position(0, 1500);

msleep(500);

set_servo_position(0, 925);

msleep(500);

set_servo_position(0, 675);

msleep(500);

disable_servos();

return 0;

}

Professional Development Workshop
© 1993 – 2019 KIPR98Page : #

Description: Write a function for the KIPR Wallaby that waves the
DemoBot servo arm up and down.
• Remember to enable the servos at the beginning of the program,

and disable the servos at the end of the program!

• Warning: The arm mounted on the DemoBot prevents the servo from freely
rotating to all possible positions. It will run into the KIPR Wallaby controller or
the chassis of the robot!
• Do not keep trying to move a servo to a position it cannot reach, as this can burn out the servo

and also consume a lot of power from the robot.

• Use the Servo screen to determine the limits of the DemoBot arm, write these numbers down,
and then use these numbers in the code.

Wave the Servo Arm

Professional Development Workshop
© 1993 – 2019 KIPR99Page : #

Description: Write a program for the KIPR Wallaby that waves the
DemoBot servo arm up and down. Write a function that does one
wave. Call it from the main function

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Enable servos. // 1. Enable servos.

2. Move servo to up. // 2. Move servo to UP.

3. Wait for 3 seconds. // 3. Wait for 3 seconds.

4. Move servo to down. // 4. Move servo to DOWN.

5. Wait for 3 seconds. // 5. Wait for 3 seconds.

6. Disable servos. // 6. Disable servos.

7. End the program. // 7. End the program.

Wave the Servo Arm

Professional Development Workshop
© 1993 – 2019 KIPR100Page : #

Analysis:

Wave the Servo Arm

Flowchart

Begin

Enable servos.

Move servo to the UP limit.

Wait for 3 seconds.

Disable servos.

End

Return 0

Move servo to the DOWN limit.

Wait for 3 seconds.

Professional Development Workshop
© 1993 – 2019 KIPR101Page : #

Commenting Within a Program

int main ()

{

// arm_port = 0

// arm_down = 400

// arm_up = 1230

printf("Wave Servo Exercise\n");

return 0;

}

Keeping track of the ports, positions, etc could also be done in a
notebook, but what if that notebook is misplaced?

Make comments after the first curly
bracket and before the printf

Professional Development Workshop
© 1993 – 2019 KIPR102Page : #

Some reasons to use a variable:

1. Do not have to remember which value is a certain servo
position – the computer remembers instead

2. It makes the program easier to read and understand

3. Makes it easier to debug the program

4. Variables can be used to store the results of computations

Variables

Professional Development Workshop
© 1993 – 2019 KIPR103Page : #

• A variable is a named container that stores a type of value
A variable has the following three components:

a. the type of data it stores (holds),

b. the name, and

c. the value.

• Visualize/think of a variable like a storage space that holds a value
with a name on it…

• Servo “up” position

• Servo “down” position

• Etc.

Variables

int arm_up;

arm_up = 1230;

a b
c Use int as the data

type to store whole

numbers, aka integers!

1230arm_up

400arm_down

Professional Development Workshop
© 1993 – 2019 KIPR104Page : #

Each variable is given a unique name so we can identify it…
• Variable names can be almost anything.

• Variable names can contain letters, numbers, and underscores (“_”).

• Variable names cannot begin with a number.

• Variable names should be meaningful and not “x”

An Example:

int arm_up; // variable “declaration”

arm_up = 1230; // variable "initialization"

The declaration and initialization can be done at the same time

int arm_up = 1230;

Variable Names

Professional Development Workshop
© 1993 – 2019 KIPR105Page : #

1. Declaring a variable:

int arm_up;

2. Initializing a variable:

arm_up = 1230;

2. Calling a variable:

arm_up

What is int?

int stands for “integer”. This

means that the variable arm_up

will have an integer (whole

number) value.

See the Team Homebase resources for

more information on data types

Working with Variables

https://docs.google.com/presentation/d/1Qri0LWEH7ovnkzvLA5ercOjRevTRIOw79klduqo5dTI/edit#slide=id.g16beb6e05d_2_0

Professional Development Workshop
© 1993 – 2019 KIPR106Page : #

Using Variables for Servo Motors

int main ()

{

// arm port = 0

// arm up = 1230

// arm down = 400

printf("Wave servo\n");

enable_servos();

set_servo_position(0,1230);

msleep(500);

set_servo_position(0,400);

msleep(500);

return 0;

}

int main ()

{

int arm_port = 0;

int arm_up = 1230;

int arm_down = 400;

printf("Wave servo\n");

enable_servos();

set_servo_position(arm_port, arm_up);

msleep(500);

set_servo_position(arm_port, arm_down);

msleep(500);

return 0;

}

Remove the
forward slashes

from the
comments, add
int for the data
type, and since it
is now code add
the semicolon

Professional Development Workshop
© 1993 – 2019 KIPR107Page : #

Description: Navigate to and manipulate game pieces using the claw and

servos.

Goal #1: Mat A - Starting in the start box, move the firetruck from circle 7 to

circle 10. Bonus: Adding to the previous program, after setting firetruck

down, pick up a 2” cube from circle 12 and stack on top of the firetruck.

Goal #2: Mat A – Create the following stack in circle 5 using a blue pom and

two 1” blocks:

Customize the claw so that it can pick up the whole stack. Starting in the

start box, pick up the stack from circle 5 and move it to the yellow garage.

Robot or game pieces may not cross solid lines of targeted garage. Bonus:

After setting the stack in the yellow garage, pick only the pom back up and

move it to the blue garage.

Connections to the Game Board

Professional Development Workshop
© 1993 – 2019 KIPR108Page : #

Lunch!

Professional Development Workshop
© 1993 – 2019 KIPR109Page : #109Page :

Making Smarter Robots with Sensors

analog() and digital() sensors

wait_for_light() function

Professional Development Workshop
© 1993 – 2019 KIPR110Page : #

• It is difficult to be consistent with just “driving blind”.

• By adding sensors to our robots, we can allow them to
detect things in their environment and make decisions
about them!

• Robot sensors are like human senses!
• What senses does a human have?

• What sensors should a robot have?

Sensors

Professional Development Workshop
© 1993 – 2019 KIPR111Page : #

Analog Sensors

• Range of values:

0 – 4095

• Ports: 0 – 5

• Function: analog(port #)

• Sensors:

• Light

• Small reflectance

• Large reflectance

• Slide sensor

• Range Finder

Digital Sensors

• Range of values:

0 (not pressed) or 1 (pressed)

• Ports: 0 – 9

• Function: digital(port #)

• Sensors:

• Large touch

• Small touch

• Lever touch

Analog and Digital Sensors

Professional Development Workshop
© 1993 – 2019 KIPR112Page : #

Retrieve the analog sensor value with a function

• There are 6 analog ports (0-5)

analog(Port#) analog(1)

Retrieve the digital sensor value with a function

• There are 10 digital ports (0-9)

digital(Port#) digital(8)

NOTE: when these functions are called, they return an integer value
into the “code” where they were called at the time the code is run.

Remember Sensor Functions

Professional Development Workshop
© 1993 – 2019 KIPR113Page : #

KIPR Robotics Controller Sensor Ports

Digital Sensors
Ports # 0 – 9

Analog Sensors
Ports # 0-5

Sensor Plug
Orientation

Professional Development Workshop
© 1993 – 2019 KIPR114Page : #

There are many digital sensors in the kit that can detect touch.

Detecting Touch

Lever TouchSmall TouchLarge Touch

Professional Development Workshop
© 1993 – 2019 KIPR115Page : #

• The Wallaby has built-in buttons on the right side (opposite

the power switch)

right_button()

left_button()

a_button()

b_button()

c_button()

• returns a value of 1 if the button is being pressed

• returns a value of 0 if the button is not being pressed at that time

Built-In Digital Sensor

Professional Development Workshop
© 1993 – 2019 KIPR116Page : #

while Loop on R Button

int main()

{

// Has R button been touched?

while()

{

printf("Press the R Button!\n");

}

printf("Ahh! Something touched my Button!\n");

return 0;

}

R button

Professional Development Workshop
© 1993 – 2019 KIPR117Page : #

Mounting Lever Touch Sensor

To add the lever sensor mount. Remove the channel you
used for the bulldozer on the back of the Wallaby and
then follow the steps above.

Professional Development Workshop
© 1993 – 2019 KIPR118Page : #

Sensor plug
orientation

Plug in the Lever Touch Sensor

Close-up of sensor

plug orientation

Plug the touch sensor

into digital port 0

Professional Development Workshop
© 1993 – 2019 KIPR119Page : #

Sensor Values can be accessed from the Sensor List on the Wallaby

• This is very helpful to see readings from all of the sensors
being used prior to utilizing the values in the code.

Reading Sensor Values
from Robot

Professional Development Workshop
© 1993 – 2019 KIPR120Page : #

Scroll down to the
digital sensor and

read the value when
a touch sensor

is pressed and when
it is not pressed

Reading Sensor Values
from Robot

Professional Development Workshop
© 1993 – 2019 KIPR121Page : #

Use the Sensor Graph

Professional Development Workshop
© 1993 – 2019 KIPR122Page : #122Page :

Introduction to while loops

Program flow control with sensor driven loops

while and Boolean operators

Professional Development Workshop
© 1993 – 2019 KIPR123Page : #

• What if we want to repeat the same “item/action” over and over
(and over and over)?
• For example, checking to see if a touch sensor has been pressed.

• We can do this using a loop, which controls the flow of the
program by repeating a block of code.

Program Flow Control with Loops

Professional Development Workshop
© 1993 – 2019 KIPR124Page : #

while Loops

while (condition)

{

Code to execute while

the condition is true

}

Notice there is no
terminating

semicolon after
the while
statement

We accomplish this loop with a while statement.

while statements keep a block of code running

(repeating/looping) so that sensor values can be continually
checked and a decision made. The while statement checks to see
if something is true or false via Boolean operators.

Professional Development Workshop
© 1993 – 2019 KIPR125Page : #

while (digital(port#) == 0)

Type of sensor:
Analog & Digital

Port number
analog (0-5)
digital (0-9)

Boolean Logic
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Equal to
!=Not equal to

{

motor(0,75);

motor(3,75);

}

Code to execute while
the condition is true

Notice there is
not a terminating

statement

while Statement

Professional Development Workshop
© 1993 – 2019 KIPR126Page : #

The while loop checks to see if a Boolean test is true or false…
• If the test is true, then the while loop continues to execute the block of code that

immediately follows it.

• If the test is false, then the while loop finishes, and the line of code after the block of
code is executed.

while Loops

int main()

{

// Code before loop

while (Boolean test)

{

// Code to repeat ...

}

// Code after loop

return 0;

}

Begin

End

Block Header (no semicolon!)

Professional Development Workshop
© 1993 – 2019 KIPR127Page : #

The Boolean test in a while loop is asking a question:

Is this statement true or false?

• The Boolean test (question) often compares two values to one
another using a Boolean operator, such as:

== Equal to (NOTE: two equal signs, not one which is an assignment!)

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

while and Boolean Operators

Professional Development Workshop
© 1993 – 2019 KIPR128Page : #

Boolean English Question True Example False Example

A == B Is A equal to B? 5 == 5 5 == 4

A != B Is A not equal to B? 5 != 4 5 != 5

A < B Is A less than B? 4 < 5 5 < 4

A > B Is A greater than B? 5 > 4 4 > 5

A <= B Is A less than or equal to B?
4 <= 5

5 <= 5
6 <= 5

A >= B Is A greater than or equal to B?
5 >= 4

5 >= 5
5 >= 6

Boolean Operators Cheat Sheet

Professional Development Workshop
© 1993 – 2019 KIPR129Page : #

Description: Write a program for the KIPR Wallaby that drives the
DemoBot forward until a touch sensor is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Drive forward. // 1. Drive forward.

2. Loop: Is not touched? // 2. Loop: Is not touched?

3. Stop motors. // 3. Stop motors.

4. End the program. // 4. End the program.

Drive Until Sensor is Pressed

Professional Development Workshop
© 1993 – 2019 KIPR130Page : #

Analysis: Flowchart

Drive Until Sensor is Pressed

Is it
touched?

Stop motors.

NO
YES

Begin

End

Return 0

Drive forward.

This part of the code
is the loop.

Professional Development Workshop
© 1993 – 2019 KIPR131Page : #

Solution:

Drive Until Sensor is Pressed

Pseudocode

int main()

{

printf("Drive until bump\n");

while (digital(0) == 0)

{

motor(0, 75);

motor(3, 75);

}

ao();

return 0;

}

Source Code

1. Loop: Is it Touched?
1.1 Drive Forward

2. Stop Motors
3. End the Program

Professional Development Workshop
© 1993 – 2019 KIPR132Page : #

int main()

{

printf("Drive until bump\n");

while (digital(0) == 1)

{

motor(0,50);

motor(3,50);

}

ao();

return 0;

}

1. Change the expected (test condition) value from 0 to 1

2. Objective: Predict/describe what the robot will do

3. Run the program

Changing the Condition

Professional Development Workshop
© 1993 – 2019 KIPR136Page : #

• Returns the analog value of the port (a value
in the range 0-4095). Analog ports are
numbered 0-5.

• Light sensors, slide, range finders and
reflectance are examples of sensors that are
used in analog ports.

Range Finder

Small IR Reflectance Sensor

Light Sensor

Slide Sensor

Learning about Analog Sensors

Professional Development Workshop
© 1993 – 2019 KIPR137Page : #137Page :

Measuring Distance

Infrared range finder sensor

Professional Development Workshop
© 1993 – 2019 KIPR138Page : #

Plug in the Range Finder Sensor

Sensor plug
orientation

Range Finder

Plug analog

sensor into

analog port 0

Professional Development Workshop
© 1993 – 2019 KIPR139Page : #

Read the values when the Range Finder sensor is pointed at an
object and slowly move it toward/away from the object

Range Finder

Check Range Finder Sensor on
Wallaby Screen

Sensor Ports

Sensor Values

Professional Development Workshop
© 1993 – 2019 KIPR140Page : #

Range Finder Sensor Information

• Low values: indicate greater distance (farther from robot)
• High values: indicate shorter distance (closer to robot)
• Optimal range is ~4” and up
• 0” to 3.5” values are not optimal.
• Objects closer than the focal point (~4”) will have the same

readings as those far away.

Professional Development Workshop
© 1993 – 2019 KIPR141Page : #

~2700

Objects that are farther away
return a smaller number

0 400 900 900150020002600 0

Focal Point

Objects that are
inside the focal
point return a
smaller #, too
close to object

Useful range of the sensor

The value chosen may need to be adjusted up or down a little to get the desired

distance from an object. Optimal distance is about 4.5” away from the sensor.

Range Finder Sensor Values

Professional Development Workshop
© 1993 – 2019 KIPR142Page : #

Use the sensor value to see that the farther away an object is the
lower the value returned. The closer an object is the higher the
value until you get within ~4” of the sensor.

1. Extend your arm in front of you with your thumb pointed up.

2. Focus on your thumb and then slowly bring your thumb toward
your face.

3. What happens when your thumb gets close to your face?

– Did it get blurry? Yes! It got within the focal point of your
eyes (where you could focus on it and make it clear)

4. The Range Finder sensor also has a focal point and if the object is
too close the sensor cannot tell if it is close or far away.

5. When attaching the Range Finder sensor to the robot consider the
~4” distance from the sensor to its focal point

Range Finder Sensor
Focal Point Problem

Professional Development Workshop
© 1993 – 2019 KIPR143Page : #

while (analog(0) <= 2700)

{
motor (0,40);

motor (3,40);

}

Learning to Use the
Range Finder Sensor

Type of sensor:
analog

Port number
analog (0-5)

Boolean Logic
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Equal to
!=Not equal to

Code will execute while
the Range Finder is less
than or equal to 2700

Notice there is
not a terminating

statement

Professional Development Workshop
© 1993 – 2019 KIPR144Page : #

1. Create a new project named “Find the Wall”.
2. Write and compile a program that will find the

wall and stop.

Pseudocode
1. Print Find the Wall and Back Up

2. Check the sensor value in analog port 1, Is the
value <= 2700?

3. Drive forward as long as the value is <= 2700
(or a value determined earlier)

4. Exit loop when value is greater than 2700

5. Shut everything off

YES

NO

Is the
value <=

2700?

Print Find the….

Move Forward

Find the Wall

All Off

START

STOP

Professional Development Workshop
© 1993 – 2019 KIPR145Page : #

#include <kipr/botball.h>

int main()

{

printf("Find the wall\n");

while (analog(0) <= 2700)

{

motor(0,40);

motor(3,40);

}

ao();

return 0;

}

while “Find the Wall” Solution

Professional Development Workshop
© 1993 – 2019 KIPR146Page : #

Pseudocode

1. Print Find the Wall and Back Up

2. Check the sensor value in analog port 1, Is the
value <=2700?

3. Drive forward as long as the value is <=2700
(or a value determined earlier)

4. Exit loop when value is greater than 2700

5. Back up for 3 seconds

6. Shut everything off

Find the Wall and Back Up

YES

NO

Is the
value <=

2700?

Print Find the….

Move Forward

Move Backwards 3 seconds

START

STOP

All Off

Professional Development Workshop
© 1993 – 2019 KIPR147Page : #

This sensor is really a short range reflectance sensor. There is an
infrared (IR) emitter and an IR collector in this sensor. The IR emitter
sends out IR light and the IR collector measures how much is
reflected back.

Amount of IR reflected back depends on surface texture, color and
distance to surface.

This sensor is excellent for line following

Black materials typically absorb IR and reflect very little IR and white
materials typically absorb little IR and reflect most of it back
• If this sensor is mounted at a fixed height above a surface, it is easy to

distinguish a black surface from a white surface
• Connect to analog port 0 through 5

Analog Sensor:
Small Top Hat Sensors

Professional Development Workshop
© 1993 – 2019 KIPR148Page : #

This is an analog() sensor, so plug it into any of
the analog ports (0-5)

• Values can be between 0 and 4095
• Mount the sensor on the front of the robot

so that it is pointing to the ground and
~1/4” from the surface Surface

Reflectance Sensor Ports

1/4”

Professional Development Workshop
© 1993 – 2019 KIPR149Page : #

Mounting Sensor on DemoBot

The small top hat (reflectance) sensor works best if mounted ~1/8 to
~1/4 inch off the surface such that the distance to the ground does
not vary much/at all while the robot moves.

Professional Development Workshop
© 1993 – 2019 KIPR150Page : #

With the IR sensor plugged into analog port #0
• Over a white surface the value is (~200)
• Over a black surface the value is (~3000)

Reading Sensor Values
From the Sensor List

The IR sensor is correctly

mounted when the values

are between 2900 and 3100

on a black surface

The IR sensor is correctly mounted

when the values are between 175

and 225 on a white surface

Professional Development Workshop
© 1993 – 2019 KIPR151Page : #

1. Place an IR analog sensor in one of the analog ports (0-5).
2. After mounting the IR sensor, check value when sensor is over black on Mat

A, B or black tape

The black threshold value is ~1600

2000200

~1600

0 4095

Greater than 1600Less than or equal to 1600

Understanding the IR Values

Professional Development Workshop
© 1993 – 2019 KIPR152Page : #

Pseudocode (Task Analysis)

1. Prints looking for black line

2. Check the sensor value in analog port 0,

<= 1600

3. Drive forward as long as the value is <=

1600

4. Exit loop when value is 1600 or greater

5. Shut everything off

Find the Black Line

YES

NO

Is the
value <=

1600?

Looking for Black Line

Move Forward

All Off

START

STOP

Professional Development Workshop
© 1993 – 2019 KIPR153Page : #

#include <kipr/botball.h>

int main ()

{

printf("Find the black line\n");

while (analog(0) < 1600)

{

motor(0,78);

motor(3,74);

}

ao();

return 0;

}

while “find black line” Solution

Professional Development Workshop
© 1993 – 2019 KIPR154Page : #154Page :

Motor Position Counter

Motor position counter functions

Ticks and revolutions

Professional Development Workshop
© 1993 – 2019 KIPR155Page : #

Each motor used by the DemoBot has a built-in motor position counter,
which can be used to calculate the distance traveled by the robot!

get_motor_position_counter(0) — OR — gmpc(0)

// Tells us the number of ticks the motor on port #0 has rotated.

clear_motor_position_counter(0); — OR — cmpc(0);

// Resets the tick counter to 0 for the motor on port #0.

• The motor position is measured in “ticks”.

• Botball motors have approximately 1800 ticks per revolution.

• Use wheel circumference divided by 1800 to calculate distance!

Motor Position Counter

Motor Port #
(#0 – 3)

Motor Port #
(#0 – 3)

Similar to how a clock is divided into
60-second intervals (ticks).

Professional Development Workshop
© 1993 – 2019 KIPR156Page : #

Access the Motors from the Motors and Sensors screen

• This is very helpful to test the motors and see the actual motor
position counters “in action”

Seeing Counters on Wallaby

Professional Development Workshop
© 1993 – 2019 KIPR157Page : #

Seeing Counters on Wallaby

Select motor port

Reset the counter Rotate the robot’s wheel (plugged into port 0) and
watch the position counter.

What happens if the wheel turns in the opposite
direction?

Motor Position
in “ticks”

An alternative is to place the robot on a surface and roll it forward to measure the
number of ticks from a starting position to another location or object.

Professional Development Workshop
© 1993 – 2019 KIPR158Page : #

Place the robot on a surface and roll it forward to measure the number of ticks
from a starting position to another location or object.

Place the robot in the start box of Mat A and using the motors/widget screen:
1) reset the left motor counter
2) manually push the robot forward to circle 9 on the mat
3) visually record/remember the tick count

Description: Write a program to drive the DemoBot forward that many “ticks” and
then stop.

Pseudocode

Try making it!

Drive to a Specific Point

Professional Development Workshop
© 1993 – 2019 KIPR159Page : #

Solution:

Drive to a Specific Point

1. Reset motor position counter.
2. Loop: Is counter < desired distance?

2.1. Drive forward.
3. Stop motors.
4. End the program.

Pseudocode
int main()

{

int distance = 4500; // in ticks

cmpc(0);

while (gmpc(0) < distance)

{

motor(0, 50);

motor(3, 50);

}

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR160Page : #

Reflection: What can be noticed after the program was ran?

• How far did the robot travel? Was it always the same (it was
tested more than once, right)?
• The robot most likely went FURTHER than it was programmed to (check the motors

screen after it stops to see the actual final tick count). Why? Hint: inertia

• Change the loop so that it actually goes to “distance - (actual - desired)”:

while(gmpc(0) < distance - (4832 – distance))

• How could the program be modified to travel a specific distance in
millimeters?
(Hint: Use wheel circumference (in mm) divided by 1800 to calculate number
of mm per tick!)

Drive to a Specific Point

Professional Development Workshop
© 1993 – 2019 KIPR161Page : #

Description: Write a program to drive the DemoBot forward to a specific point and
then back up to where it started.

Pseudocode Comments
1. Drive forward. // 1. Drive forward.

2. Stop at specific distance // 2. Loop: Is motor position at specific count?

3. Drive backwards. // 3. Drive Backwards to specific distance.

4. Stop at starting point. // 4. End the program.

Drive to a Specific Point + Backup

Professional Development Workshop
© 1993 – 2019 KIPR162Page : #

Solution:

Drive to a Specific Point + Backup

int main()

{

int distance = 4500; // in ticks

cmpc(0);

while (gmpc(0) < distance)

{

motor(0, 50);

motor(3, 50);

}

ao();

while (gmpc(0) > 0)

{

motor(0, -50);

motor(3, -50);

}

ao();

return 0;

}

Now back up to

position (tick count 0).

Note: clear counter not

needed this time

Professional Development Workshop
© 1993 – 2019 KIPR163Page : #

Description: Navigate to and manipulate game pieces utilizing sensors and

motor position counter.

Goal #1: Mat A – 2” block will be set on circle 4, 6, or 9. Starting in the start

box, drive forward until the cube is sensed and then stop within 3” without

touching it. Bonus: Adding to the previous program, once the cube is sensed,

pick it up and navigate back to the start box.

Goal #2: Mat A – Set a 1” block on coordinates A12. Driving using motor

position counter, pick up the 1” block and set it in the yellow garage. Robot

or game pieces may not cross solid lines of targeted garage. Bonus: Set 1”

blocks on A6, A12, and A18. One by one pick them up, and deposit all of

them in the yellow garage.

Connections to the Game Board

Professional Development Workshop
© 1993 – 2019 KIPR164Page : #

Precision Turning

Description: Write a program that turns left 90 degrees and then turns right

90 degrees using motor position counter.

Hint: Remember how we manually moved our robots to find the correct position, and

that inertia needs to be accounted for…

Pseudocode Comments

1. Turn left 90 degrees. // 1. Turn left 90 degrees

2. Stop // 2. Stop

3. Turn right 90 degrees. // 3. Turn right 90 degrees

4. Stop at same orientation as start. // 4. Stop at same orientation as start

Professional Development Workshop
© 1993 – 2019 KIPR165Page : #165Page :

Fun with Functions

Writing new functions

Function prototypes, definitions, and calls

Professional Development Workshop
© 1993 – 2019 KIPR166Page : #

Remember: a function is like a recipe.

• When a function is called (used), the computer (or robot) does all
of the actions listed in the “recipe” in the order they are listed.

• Functions are very helpful if an action is repeated multiple times:
• driving straight forward → drive_forward();

• making a 90° left turn → turn_left_90();

• making a 180° turn → turn_around();

• lifting an arm up → lift_arm();

• closing a claw → close_claw();

• Functions often make it easier to (1) read the main function, and
(2) change distance, turning, timing, or other values if necessary.

Writing Custom Functions

These are made up…
and that’s the point!

Write functions to do
whatever is needed!

Professional Development Workshop
© 1993 – 2019 KIPR167Page : #

There are three components to a function:

1. Function prototype: a promise to the computer that the function is defined
somewhere (an entry in the table of contents of a recipe book)

2. Function definition: the list of actions to be executed (the recipe)

3. Function call: using the function (recipe) in a program

Writing Custom Functions

include <kipr/botball.h>

void turn_left_90();

int main()

{

turn_left_90();

return 0;

}

void turn_left_90()

{

while(gmpc(0) <= 1350)

{

motor(0,100);

motor(3,0);

}

ao();

}

Use void in a

function prototype if

commanding the

robot to do

something.

Function prototypes
go above main.

Function calls
go inside main
(or inside other

functions).

Function definitions
go below main.

Professional Development Workshop
© 1993 – 2019 KIPR168Page : #

Writing Custom Functions

The function prototype and the function definition look the same except for one thing…

prototype

include <kipr/botball.h>

void turn_left_90();

int main()

{

turn_left_90();

return 0;

}

void turn_left_90()

{

while(gmpc(0) <= 1350)

{

motor(0,100);

motor(3,0);

}

ao();

}

Notice: no semicolon!
(Why not?)

definition

Professional Development Workshop
© 1993 – 2019 KIPR169Page : #

include <kipr/botball.h>

void turn_left_90();

int main()

{

turn_left_90();

return 0;

}

void turn_left_90()

{

while(gmpc(0) <= 1350)

{

motor(0,100);

motor(3,0);

}

ao();

}

Writing Custom Functions

Neither the function prototype nor the function definition tell the
computer when to use the function. That is the job of the function call…

The function prototype is a
promise to the computer…

… that it will tell the
computer what to do in the

function definition.

Professional Development Workshop
© 1993 – 2019 KIPR170Page : #

include <kipr/botball.h>

void turn_left_90();

int main()

{

turn_left_90();

return 0;

}

void turn_left_90()

{

while(gmpc(0) <= 1350)

{

motor(0,100);

motor(3,0);

}

ao();

}

Writing Custom Functions

The function call makes the
computer jump down to the

function definition.

The program then executes
all of the lines of code in the

block of code.

After the computer executes all of the lines of code in
the function definition, the program jumps back up to
the line of code after the function call and continues.

Professional Development Workshop
© 1993 – 2019 KIPR171Page : #

Writing Custom Functions

// function prototypes

void turn_left();

void turn_right();

int main()

{

turn_left(); // turn_left function call

turn_right(); // turn_right function call

return 0;

}

void turn_left() // turn_left function definition

{

while(gmpc(0) <= 1350)

{

motor(0,100);

motor(3,0);

}

ao();

}

void turn_right() // turn_right function definition

{

while(gmpc(3) <= 1350)

{

motor(3,100);

motor(0,0);

}

ao();

}

Professional Development Workshop
© 1993 – 2019 KIPR172Page : #

Description: Write some custom function to navigate the robot using motor

position counter. All movement must be completed using custom functions.

Goal #1: Mat A– Drive around the green garage and return to the start box. Bonus:
Place a 2” block on circle 7. Adding to the previous program, once the cube is sensed,
pick it up and navigate back to the start box using the same parameters except
deposit the block in the start box.

Goal #2: Mat A– Start in the start box and navigate to, and park, in the orange
garage. No part of the robot may cross the solid boundaries of the orange garage.

Connections to the Game Board

Professional Development Workshop
© 1993 – 2019 KIPR173Page : #173Page :

Making a Choice

Program flow control with conditionals

if-else conditionals

if-else and Boolean operators

Using while and if-else

Professional Development Workshop
© 1993 – 2019 KIPR174Page : #

• What if we want to execute a block of code only if certain
conditions are met?

• We can do this using a conditional, which controls the flow of the
program by executing a certain block of code if its conditions are
met or a different block of code if its conditions are not met.

• This is similar to a loop, but differs in that it only executes once.

Program Flow Control with
Conditionals

Professional Development Workshop
© 1993 – 2019 KIPR175Page : #

Program Flow Control with
Conditionals

End

Code after conditional.

Begin

Is it
touched?

Print “Not pressed!”

YES NO

Print “Pressed!”

This part of the code
is the conditional.

Professional Development Workshop
© 1993 – 2019 KIPR176Page : #

The if-else conditional checks to see if a Boolean test is true or false…
• If the test is true, then the if conditional executes the block of code that immediately follows it.

• If the test is false, then the if conditional does not execute the block of code, and the else block of
code is executed instead.

if-else Conditionals

int main()

{

if (digital(8) == 1)

{

printf("Touched!\n");

}

else

{

printf("Not touched!\n");

}

return 0;

}

What does this say?

What is this?

Notice: In the same way that a while loop doesn’t have a semicolon after the condition, neither

does an if-else conditional.

Professional Development Workshop
© 1993 – 2019 KIPR177Page : #

Using while and if-else

Notice how the
{ and } braces
line up for each
block of code!

int main()

{

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

printf("It's dark in here!\n");

}

else

{

printf("I see the light!\n");

}

} // loop ends when button is pressed

return 0;

}

Conditionals can be placed inside of loops. This is beneficial when
wanting to keep checking a set of conditions over and over, instead
of just a single time.

What should go inside
the condition for the

while loop?

Professional Development Workshop
© 1993 – 2019 KIPR178Page : #

Mounting the Range Finding sensor

Generally this sensor should be mounted to the front. Ideal use
of this sensor is for when the robot is 4-inches or less away from

the target object. Note that this mechanical example shown
below is a quick solution, not a game winning solution.

Professional Development Workshop
© 1993 – 2019 KIPR179Page : #

Pseudocode

1. Check the a button, if it is not pressed

2. Drive forward as long as the value is
<=2700 (or a predetermined value)

3. Drive backwards as long as the value is
greater than 2700

4. Exit loop when a button is pressed

5. Shut everything off

If the a
button is not

pressed?

YES

Begin

End

Return 0.

NOYES

Is the et
value<=2700

Drive forward
Drive

backwards

Stop motors.

Find the Wall and Back Up then
Drive forward

NO

Professional Development Workshop
© 1993 – 2019 KIPR180Page : #

#include <kipr/botball.h>

int main()

{

printf ("Drive to the wall\n");

while (digital(0) == 0) // Touch sensor not touched

{

if (analog(0) <= 2700) // Far away drive forward

{

motor(0,80);

motor(3,80);

}

if (analog(0) > 2701) // Too close back up

{

motor(0,-80);

motor(3,-80);

}

}

ao();

return 0;

}

Range Finder Find the Wall and
Back Up then Drive forward

Professional Development Workshop
© 1993 – 2019 KIPR181Page : #

Description: Write a program for the KIPR Wallaby that makes the
DemoBot maintain a specified distance away from an object, and stops
when the touch sensor is touched.

Maintain Distance

Pseudocode
1. Loop: Is not touched?

If: Is distance too far?

Drive forward.

Else:

If: Is distance too close?
Drive reverse.

Else:
Stop motors.

2. Stop motors.

3. End the program.

Professional Development Workshop
© 1993 – 2019 KIPR182Page : #

Solution:

Maintain Distance

1. Loop: Is not touched?

If: Is distance too far?

Drive forward.

Else:

If: Is distance too close?
Drive reverse.

Else:
Stop motors.

2. Stop motors.

3. End the program.

int main()

{

while (digital(0) == 0)

{

if (analog(5) < 1800)

{

motor(0, 80);

motor(3, 80);

}

else

{

if (analog(5) > 2600)

{

motor(0, -75);

motor(3, -75);

}

else // sensor value is 1800-2600

{

ao();

}

}

} // end of loop

ao();

return 0;

}

Source Code

Pseudocode

Professional Development Workshop
© 1993 – 2019 KIPR183Page : #

This activity requires a reflectance sensor.
• This sensor is really a short-range reflectance sensor.

• There is both an infrared (IR) emitter and an IR detector inside of this sensor.

• IR emitter sends out IR light → IR detector measures how much reflects back.

• The amount of IR reflected back depends on many factors, including surface
texture, color, and distance to surface.

This sensor is excellent for line-following!
• Black materials typically absorb most IR → they reflect little IR back!

• White materials typically absorb little IR → they reflect most IR back!

• If this sensor is mounted at a fixed height above a surface, it is easy to
distinguish a black line from a white surface.

Reflectance Sensor for Line-Following

Professional Development Workshop
© 1993 – 2019 KIPR184Page : #

Line Following Strategy Using
the Reflectance Sensor

Line Following Strategy: while - Is the button pushed?
Follow the line’s right edge by alternating the following 2 actions:
1. if detecting dark, arc/turn right

2. if detecting light, arc left.
3. Think about a sharp turn. What will the motor function look like? Remember the

bigger the difference between the two motor powers the sharper the turn.

Professional Development Workshop
© 1993 – 2019 KIPR185Page : #

Description: Starting with the DemoBot at the starting line
of the JBC B Mat. Write a program to have the robot travel
along the path using the Top Hat sensor (line follow).

Line-Following

Professional Development Workshop
© 1993 – 2019 KIPR186Page : #

Analysis: Flowchart

Line-Following

Is not
pressed?

YES
NO

Begin

End

Return 0

NOYES

Is dark
detected?

Turn/arc right. Turn/arc left.

Stop motors.

Professional Development Workshop
© 1993 – 2019 KIPR187Page : #

YES

NO

Begin

End

Return 0

NOYES

Is dark
detected?

Turn right if
value is > 1600

Turn left if
value is <=

1600

Stop motors.

1600
> 1600<= 1600

Turn left Turn right

Is the Button pressed?

It must cover all values

0 4095

Assume all these
values are WHITE

Assume all these
values are BLACK

Understanding while and if

This is the part of the code that
tells the Wallaby what to do
when it sees black or white.

Professional Development Workshop
© 1993 – 2019 KIPR188Page : #

Solution:

Line-Following

1. Loop: Is not pressed?
If: Is dark detected?

Turn/arc left.
Else:

Turn/arc right.
2. Stop motors.
3. End the program.

Pseudocode

int main()

{

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

motor(0, 5);

motor(3, 90);

}

else

{

motor(0, 90);

motor(3, 5);

}

}

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR189Page : #

Change the threshold. Increase the “arc speed”.
int main()

{

printf("Follow the line\n");

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

motor(0, 5);

motor(3, 90);

}

else

{

motor(0, 90);

motor(3, 5);

}

}

ao();

return 0;

}

The value of 1600 or the “threshold” value is ½

way between the observed values.

Remember black reflects less IR than white so

the value is lower.

Notice the Boolean operators > 1600 or <= 1600

The value may be much lower due to lighting,

placement of sensor and arc speed.

Also increasing the “arc speed” (by making the

difference between the two motor power

values greater) may have a significant impact.

Tips

Professional Development Workshop
© 1993 – 2019 KIPR190Page : #

Solution:

Line-following with Functions

1. Loop: Is not pressed?
If: Is dark detected?

Turn/arc right.
Else:

Turn/arc left.
2. Stop motors.
3. End the program.

Pseudocode

void turn_left();

void turn_right();

int main()

{

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

turn_right();

}

else

{

turn_left();

}

}

ao();

return 0;

}

void turn_right()

{

motor(0, 10);

motor(3, 80); // Turn/arc left.

}

void turn_left()

{

motor(0, 80);

motor(3, 10); // Turn/arc right.

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR191Page : #191Page :

Homework

Game Review

Game Strategy

Workshop Survey

Professional Development Workshop
© 1993 – 2019 KIPR192Page : #

Review the game rules under the Team Home Base tab.

• We will have a 30-minute Q&A session tomorrow.

• After the workshop, ask questions about game rules in
the Game Rules FAQ.
• Regularly visit this forum.

• Answers to questions will be found there.

Homework for Tonight:
Game Review

Visit www.KIPR.org/Botball

http://homebase.kipr.org/

Professional Development Workshop
© 1993 – 2019 KIPR193Page : #

• Break down the game into subtasks!

• Write pseudocode and/or create flowcharts!

• Start with easy points—score early and score often!

• Keep it simple and make sure it works.

• Discuss the strategy with the coach tomorrow.

• Think about the Engineering Design Process.

Homework for Tonight:
Game Strategy

Professional Development Workshop
© 1993 – 2019 KIPR194Page : #

Have a Good Night!

Don’t forget to visit www.KIPR.org

Professional Development Workshop
© 1993 – 2019 KIPR198Page : #

While you wait:
Build the Create DemoBot

The build slides should be saved on your desktop.

Welcome Back!

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/WQ8CQ65

https://www.surveymonkey.com/r/WQ8CQ65

Professional Development Workshop
© 1993 – 2019 KIPR199Page : #199Page :

Botball 2019
Professional Development Workshop

Prepared by the KISS Institute for Practical Robotics (KIPR)

with significant contributions from KIPR staff

and the Botball Instructors Summit participants

While waiting, work on yesterday’s exercises or build the Create DemoBot!

Welcome Back!

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/WQ8CQ65

https://www.surveymonkey.com/r/WQ8CQ65

Professional Development Workshop
© 1993 – 2019 KIPR200Page : #

Day 1 Day 2

Workshop Schedule – Day 2

• Botball Game Review

• Starting with a Light

• Tournament Code Template

• More Variables and Functions with Arguments

• Moving the iRobot Create: Part 1

• Moving the iRobot Create: Part 2

• iRobot Create Sensors

• Color Camera

• Logical Operators

• Resources and Support

• Botball Overview

• Getting started with the KIPR Software Suite

• Explaining the “Hello, World!” C Program

• Designing A Program

• Moving the DemoBot with Motors

• Moving the DemoBot Servos

• Making Smarter Robots with Sensors

• Introduction to while Loops

• Measuring Distance

• Motor Position Counter

• Fun with Functions

• Making a Choice

• Line-following

• Homework

Professional Development Workshop
© 1993 – 2019 KIPR201Page : #201Page :

Botball Game Review

Game Q&A

Construction, documentation, and changes

shut_down_in() function

wait_for_light() function

Professional Development Workshop
© 1993 – 2019 KIPR202Page : #

NOW!
You have 30 minutes…

Botball Game Q&A starts…

Professional Development Workshop
© 1993 – 2019 KIPR203Page : #

Botball Game Board

Professional Development Workshop
© 1993 – 2019 KIPR204Page : #

Note: Our competition tables are built
to specifications with allowable variance.

• Do NOT engineer robots that are so precise that a 1/4” difference
in a measurement means they are not successful.
• For example: the specified height of the tram assembly is set to be 13”

above the game surface, if the actual height was 13 ¼” off the surface, an
effector with too low of a tolerance may fail to do it’s job.

• Review construction documents (like the ones on the Home
Base!) to get building ideas.

• Search the internet for robots and structures to get building ideas.

• Test structure robustness before the tournament!

Ideas on Construction

Professional Development Workshop
© 1993 – 2019 KIPR205Page : #

What?
• Botball Online Project Documentation (BOPD)

• Rubrics and examples are on the Team Home Base

• NO NAMES OR SCHOOL NAMES ALLOWED ON SUBMISSIONS

When?
• 3 document submissions during design and build portion

• 1 Onsite Presentation (8 minute) at regional tournament

Why?
• To reinforce the Engineering Design Process

• Points earned in Documentation factor into the overall tournament scores!

See BOPD Examples on the Team Homebase via Team Resources ->
Team Homebase -> Team Submissions

Documentation

Professional Development Workshop
© 1993 – 2019 KIPR206Page : #

• See the Team Homebase for a document covering all
changes made in regards to Hardware, Rules, the
Wallaby, Software, and Documentation.

• Kit Parts – #2 New micro servo brackets

• Game Rules – Coins up to 250 grams (be prepared to
have them weighed-make sure they can be easily
removed)

• Resources – other updates can be found online:
www.KIPR.org/Botball

Changes this Season

http://kipr.org/Botball

Professional Development Workshop
© 1993 – 2019 KIPR207Page : #

• The light sensor is a cool way to automatically start the robot and
critical for Botball robots at the beginning of the game.

• The wait_for_light() function allows the program to run when
the robot senses a light.
• Note: It has a built-in calibration routine that will come up on the screen. A

step-by-step guide for this calibration routine is on a following slide.

• The light sensor senses infrared light, so light must be emitted
from an incandescent light, not an LED light.
• For the activities, use a flashlight.

• The more light (infrared) detected, the lower the reported value.

Starting Programs with a Light

Professional Development Workshop
© 1993 – 2019 KIPR208Page : #

wait_for_light(0);

// Waits for the light on port #0 before going to the next line.

wait_for_light() Function

int main()

{

wait_for_light(0);

printf("I see the light!\n");

return 0;

}

Review: What is this?

Professional Development Workshop
© 1993 – 2019 KIPR209Page : #

Plug in the Light Sensor
(Light source needed, cell phone works)

Digital Sensor
Ports # 0 – 9

Analog Sensor
Ports # 0-5

Sensor Plug
Orientation

Plug the Light

Sensor into

Analog Port #0

Professional Development Workshop
© 1993 – 2019 KIPR210Page : #

Use the Sensor List

Professional Development Workshop
© 1993 – 2019 KIPR211Page : #

Use the Sensor Graph

Professional Development Workshop
© 1993 – 2019 KIPR212Page : #

Description: Write a program for the KIPR Wallaby that waits for a
light to come on, drives the DemoBot forward for 3 seconds, and
then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Wait for light. // 1. Wait for light.

2. Drive forward. // 2. Drive forward.

3. Wait for 3 seconds. // 3. Wait for 3 seconds.

4. Stop motors. // 4. Stop motors.

5. End the program. // 5. End the program.

Starting with a Light

Flowchart

Drive forward.

Wait for 3 seconds.

Stop motors.

End

Return 0

Begin

Wait for light.

Professional Development Workshop
© 1993 – 2019 KIPR213Page : #

When using the wait_for_light() function in a program,
the following calibration routine will run automatically.

wait_for_light() Calibration Routine

Note: For Botball, wait_for_light() should be
one of the first functions called in the program.

A “Good Calibration!” message is a
moving red dot on green bar when

done correctly.
A “BAD CALIBRATION” message will

appear when not done correctly. The
program will need to be run again.

When the light is off (high value),
press the “Light is Off” button.

When the light is on (low value),
press the “Light is On” button.

Professional Development Workshop
© 1993 – 2019 KIPR214Page : #

wait_for_light() Calibration Routine

Professional Development Workshop
© 1993 – 2019 KIPR215Page : #

Solution:

Execution: Compile and run the program on the KIPR Wallaby.

Starting with a Light

1. Wait for light.
2. Drive forward.
3. Wait for 3 seconds.
4. Stop motors.
5. End the program.

Pseudocode
int main()

{

wait_for_light(0);

motor(0, 100); //forward

motor(3, 100);

msleep(3000);

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR216Page : #

Solution: Use a function!

Execution: Compile and run the program on the KIPR Wallaby.

Starting with a light

1. Wait for light.
2. Drive forward.
3. Wait for 3 seconds.
4. Stop motors.
5. End the program.

Pseudocode

void drive_forward();

int main()

{

wait_for_light(0);

drive_forward();

msleep(3000);

ao();

return 0;

}

void drive_forward()

{

motor(0, 100);

motor(3, 100);

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR217Page : #

• How does the wait_for_light() function work?

• We can use a loop, which controls the flow of the program by
repeating a block of code until a sensor reaches a particular value.
• The number of repetitions is unknown

• The number of repetitions depends on the conditions sensed by the robot

Remember Loops?

Professional Development Workshop
© 1993 – 2019 KIPR218Page : #

These two functions should be
two of the first lines of code in

the Botball tournament program!

wait_for_light(0);

// Waits for the light on port #0 before going to the next line.

shut_down_in(119);

// Shuts down all motors after 119 seconds (just less than 2 minutes).

• This function call should come immediately after the wait_for_light() in the code.

• If this function is not in the code, the robot may not automatically turn off its motors at
the end of the Botball round and will be disqualified!

Botball Tournament Functions

Professional Development Workshop
© 1993 – 2019 KIPR219Page : #

int main()

{

wait_for_light(0); // change the port number to match the port the robot uses

shut_down_in(119); // shut off the motors and stop the robot after 119 seconds

// The code

return 0;

}

Tournament Templates

Professional Development Workshop
© 1993 – 2019 KIPR220Page : #

Description: Write a program for the KIPR Wallaby that waits for a
light to come on, shuts down the program in 5 seconds, drives the
DemoBot forward until it detects a touch, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Wait for light. // 1. Wait for light.

2. Shut down in 5 seconds. // 2. Shut down in 5 seconds.

3. Drive forward. // 3. Drive forward.

4. Wait for touch. // 4. Wait for touch.

5. Stop motors. // 5. Stop motors.

6. End the program. // 6. End the program.

Running a Botball Tournament Program

Professional Development Workshop
© 1993 – 2019 KIPR221Page : #

Analysis:

Running a Botball Tournament Program

Flowchart

START

Shut down in 5 seconds.

Drive forward.

Wait for touch.

STOP

Return 0

Stop motors.

Wait for light.

Professional Development Workshop
© 1993 – 2019 KIPR222Page : #

Solution:

Execution: Compile and run the program on the KIPR Wallaby.

Running a Botball Tournament Program

1. Wait for light.
2. Shut down in 5 seconds.
3. Drive forward.
4. Wait for touch.
5. Stop motors.
6. End the program.

Pseudocode

int main()

{

wait_for_light(0);

shut_down_in(5);

while (digital(0) == 0)

{

motor(0, 100);

motor(3, 100);

}

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR223Page : #

Reflection:

• What happens if the touch sensor is pressed in less than 5 seconds after
starting the program?

• What happens if the touch sensor is not pressed in less than 5 seconds after
starting the program?

• What is the best way to guarantee that the program will start with the light in
a Botball tournament round? (Answer: wait_for_light(0))

• What is the best way to guarantee that the program will stop within 120
seconds in a Botball tournament round? (Answer: shut_down_in(119))

Running a Botball Tournament Program

Use these functions in the Botball tournament code!

Professional Development Workshop
© 1993 – 2019 KIPR224Page : #224Page :

More Variables and Functions with
Arguments

Data types

Creating and setting a variable

Variable arithmetic

Functions with arguments and return values

Professional Development Workshop
© 1993 – 2019 KIPR225Page : #

Set the value of an int variable to any integer chosen and change it
when needed in the code.

Note that a single equal sign (=) means is assigned (sometimes it is
called the “assignment operator”).

int counter;

int ticks;

So counter = 3; means counter is assigned 3.
And ticks = 2000 * (1400.0 / circumferenceMM); means
Read this as ticks is assigned 2000 times 1400.0 divided by
circumference all in millimeters. This is used to calculate how many
ticks needed to travel ~2 meters.

Variables (Quick Recap)

3counter

??ticks

“visualize” the
variable

storage spaces

Professional Development Workshop
© 1993 – 2019 KIPR226Page : #

Description: Write a program for the KIPR Wallaby that moves the DemoBot
servo arm from position 200 to 1800 in increments of 100. Remember to
enable the servos at the beginning of the program, and disable the servos
at the end of the program!

Analysis: What is the program supposed to do?

Move the Servo Arm Using a Loop

Pseudocode
1. Set counter to 200.
2. Set servo position to counter.
3. Enable servos.
4. Loop: Is counter < 1800?

Wait for 0.1 seconds.
Add 100 to counter.
Set servo position to counter.

5. Disable servos.
6. End the program.

Professional Development Workshop
© 1993 – 2019 KIPR227Page : #

Analysis: Flowchart

Move the Servo Arm Using a Loop

Set counter to 200.

Is counter <
1800

Disable servos.

YES

NO

Begin

End

Wait for 100 milliseconds.

Return 0

Enable servos.

Set servo position to counter.

Set servo position to counter.

Add 100 to counter.

Professional Development Workshop
© 1993 – 2019 KIPR228Page : #

Solution:

Move the Servo Arm Using a Loop

1. Set counter to 200.
2. Set servo position to counter.
3. Enable servos.
4. Loop: Is counter < 1800?

Wait for 0.1 seconds.
Add 100 to counter.
Set servo position to counter.

5. Disable servos.
6. End the program.

Pseudocode

int main()

{

int counter = 200;

set_servo_position(0, counter);

enable_servos();

while (counter < 1800)

{

msleep(100);

counter = counter + 100;

set_servo_position(0, counter);

}

msleep(100);

disable_servos();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR229Page : #

Custom Functions (Quick Recap)

void drive_forward(); // function prototype

int main()

{

drive_forward(); // function call

return 0;

}

void drive_forward() // function definition

{

motor(0, 80);

motor(3, 80);

msleep(4000);

ao();

}

When this
function is

called,
how long
will it run

for?

Professional Development Workshop
© 1993 – 2019 KIPR230Page : #

Function arguments: values that are set when the function is called

Functions with Arguments

void drive_forward(int milliseconds); // function prototype

int main()

{

drive_forward(4000); // function call

return 0;

} // end main

void drive_forward(int milliseconds) // function definition

{

motor(0, 80);

motor(2, 80);

msleep(milliseconds);

ao();

}

Professional Development Workshop
© 1993 – 2019 KIPR231Page : #

Writing Custom Functions with
Arguments

#include <kipr/botball.h>

void drive_forward(int milliseconds); // function prototype

int main()

{

drive_forward(4000); // function call

return 0;

}

void drive_forward(int milliseconds) // function definition

{

motor(0, 80);

motor(3, 80);

msleep(milliseconds);

ao();

}

… which is then used in the
function definition.

The value in the function call
sets the value of the argument…

Professional Development Workshop
© 1993 – 2019 KIPR232Page : #

#include <kipr/botball.h>

void drive_forward(int power, int milliseconds); // function prototype

int main()

{

drive_forward(80, 4000); // function call

return 0;

}

void drive_forward(int power, int milliseconds) // function definition

{

motor(0, power);

motor(3, power);

msleep(milliseconds);

ao();

}

Writing Functions
with Multiple Arguments

… which is then used in the
function definition.

The value in the function call
sets the value of the argument…

Professional Development Workshop
© 1993 – 2019 KIPR233Page : #

#include <kipr/botball.h>

void drive_forward(int power, int milliseconds); // function prototype

int main()

{

drive_forward(80, 4000);

drive_forward(75, 2000);

return 0;

}

void drive_forward(int power, int milliseconds) // function definition

{

motor(0, power);

motor(3, power);

msleep(milliseconds);

ao();

}

Arguments that Change Over Time

The values in the SECOND function call
are now 75 and 2000 respectively

… which is then used in the
function definition.

Professional Development Workshop
© 1993 – 2019 KIPR234Page : #234Page :

Moving the iRobot Create: Part 1

Setting up the Create

The Create and the KIPR Wallaby

Create functions

Professional Development Workshop
© 1993 – 2019 KIPR235Page : #

• For charging the Create, use only the power supply
which came with the Create.
• Damage to the Create from using the wrong charger is easily

detected and will void the warranty!

• The Create power pack is a nickel metal hydride
battery, so the rules for charging a battery for any
electronic device apply.
• Only an adult should charge the unit.

• Do NOT leave the unit unattended while charging.

• Charge in a cool, open area away from flammable materials.

Charging the Create

Professional Development Workshop
© 1993 – 2019 KIPR236Page : #

•The yellow battery tab pulls out of place on the bottom of the Create.

•The battery will be enabled as soon as the tab is removed.

Enabling the Battery of the Create

Create

Underside

Professional Development Workshop
© 1993 – 2019 KIPR237Page : #

• Remove the green protective tray from the top of the Create.

• Use only the Create charger provided with the kit.

• The Create docks onto the charging station.

Uncovering and Charging the Create

Serial

Port

Professional Development Workshop
© 1993 – 2019 KIPR238Page : #

Build the Create DemoBot

The build slides should be saved on your desktop.

Mounting the Robotics Controller onto
the Create

Professional Development Workshop
© 1993 – 2019 KIPR239Page : #

All programs used with the Create
MUST start with

create_connect()

and end with
create_disconnect()

Create Connect/Disconnect Functions

Begin

Connect to Create

Drive forward 2 seconds.

Turn off motors

End

Disconnect from Create

Flowchart

Professional Development Workshop
© 1993 – 2019 KIPR240Page : #

int main() // for the Create robot

{

create_connect();

wait_for_light(0); // change the port number to match the port used

shut_down_in(119); // shut off the motors and stop the robot after 119 seconds

// The code

create_disconnect();

return 0;

}

Tournament Templates

Professional Development Workshop
© 1993 – 2019 KIPR241Page : #

Note: Create commands run until a different motor command is received.

create_drive_direct(left speed, right speed);

Examples:
create_drive_direct(100, 100); // Moves forward at 100 mm/sec.

create_drive_direct(-200, 200); // Create will turn left.

create_drive_direct(150, -150); // Create will turn right.

create_stop(); // Turns off the Create motors.

WARNING: the maximum speed for the Create motors is 500 mm/second = 0.5 m/second.
It can jump off a table in less than one second!

Use something like 200 for the speed (moderate speed) until teams get the hang of this.

Create Motor Functions

Left Motor Speed
(in mm/second)

Right Motor Speed
(in mm/second)

Professional Development Workshop
© 1993 – 2019 KIPR242Page : #

Description: Write a program for the KIPR Wallaby that drives the
Create forward at 100 mm/second for four seconds, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Connect to Create. // 1. Connect to Create.

2. Drive forward at 100 mm/sec. // 2. Drive forward at 100 mm/sec.

3. Wait for 4 seconds. // 3. Wait for 4 seconds.

4. Stop motors. // 4. Stop motors.

5. Disconnect from Create. // 5. Disconnect from Create.

6. End the program. // 6. End the program.

Moving the Create

Professional Development Workshop
© 1993 – 2019 KIPR243Page : #

Analysis:

Moving the Create

Flowchart

Begin

Connect to Create.

Drive forward at 100 mm/sec.

Wait for 4 seconds.

End

Return 0

Stop motors.

Disconnect from Create.

Professional Development Workshop
© 1993 – 2019 KIPR244Page : #

Solution:

Execution: Compile and run the program on the KIPR Wallaby.

Moving the Create

1. Connect to Create.
2. Drive forward at 100 mm/sec.
3. Wait for 4 seconds.
4. Stop motors.
5. Disconnect from Create.

Pseudocode

int main()

{

create_connect();

create_drive_direct(100, 100);

msleep(4000);

create_stop();

create_disconnect();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR245Page : #

Description: Write a program for the KIPR Wallaby that drives the
Create forward until it touches an object (or gets as close as it can),
and then returns to its starting location (home).
• Move the object to various distances.

Touch an Object and “Go Home”

Object
Starting line

Object
Starting line

Object
Starting line

iRobot

Create

iRobot

Create iRobot

Create

Professional Development Workshop
© 1993 – 2019 KIPR246Page : #

Create Safety Feature

Create has some built in safety features that disable the motors if the robot is
picked up, or if the front part goes over an edge. The create_full()
command will disable all built in safety features. Use it with caution.

Why would this be done?
• During calibration the program is already started and the robot is lifted

off the ground. Lights turn on and the Create doesn’t move.
• The Create is driving on the game board and the front edge of it gets on

top of the PVC tube, and then the robot stops.

create_full(); //disable safety features

create_safe(); //enable safety features

Add this after
create_connect()

Professional Development Workshop
© 1993 – 2019 KIPR247Page : #247Page :

Moving the iRobot Create: Part 2

Create Distance and Angle Functions

Professional Development Workshop
© 1993 – 2019 KIPR248Page : #

The Create has a built-in sensor that measures
the distance traveled (in millimeters) and

the angle turned (in degrees).

get_create_distance();

// Tells us the distance the Create has traveled in mm.

set_create_distance(0);

// Resets the Create distance traveled to 0 mm.

get_create_total_angle();

// Tells us the total angle the Create has turned in degrees.

// Positive angles are to the left. Negative angles are to the right.

set_create_total_angle(0);

// Resets the Create angle turned to 0 degrees.

Create Distance/Angle Functions

This is similar to the
motor position counter...

but better!

Professional Development Workshop
© 1993 – 2019 KIPR249Page : #

Using Create Functions

int main()

{

create_connect();

set_create_distance(0);

while (get_create_distance() < 1000)

{

create_drive_direct(200, 200);

}

create_stop();

create_disconnect();

return 0;

}

int main()

{

create_connect();

set_create_total_angle(0);

while (get_create_total_angle() < 90)

{

create_drive_direct(-200, 200);

}

create_stop();

create_disconnect();

return 0;

}

Examples

Professional Development Workshop
© 1993 – 2019 KIPR250Page : #

Printing Create Sensor Values

Sometimes it is helpful to see the actual values from the create sensors. To do
this use the same print function used before to print text.

To print a changing integer value, use a %d placeholder in the print statement.

printf("Angle Value: %d\n", get_create_total_angle());

printf("Value: %d\n", get_create_distance());

This is just regular
text and can

change.

After the comma provide the
value to print. It can be a

function call (as here) or a
variable name.

This is where it will print the
provided value. Must be %d

for integers.

Professional Development Workshop
© 1993 – 2019 KIPR251Page : #

Printing Create Sensor Values

int main()

{

create_connect();

set_create_total_angle(0);

while (get_create_total_angle() > -90)

{

create_drive_direct(200, -200);

}

create_stop();

printf("Angle Value: %d\n",get_create_total_angle());

printf("Distance Value: %d\n",get_create_distance());

create_disconnect();

return 0;

}

Printing the create sensor values can be a good way to debug an issue!

Professional Development Workshop
© 1993 – 2019 KIPR252Page : #252Page :

iRobot Create Sensors

Create Sensor Functions

Logical Operators

Professional Development Workshop
© 1993 – 2019 KIPR253Page : #

To get Create sensor values, type get_create_sensor(),
replacing sensor with the name of the sensor

Create Sensor Functions

rcliff lcliff

lfcliffrfcliff

battery_capacity

lbumprbump

lwdroprwdrop

cwdrop

distance total_angle

rlightbump

rflightbump

rclightbump lclightbump

lflightbump

llightbump

Professional Development Workshop
© 1993 – 2019 KIPR254Page : #

get_create_lbump()

get_create_rbump()

// Tells us if the Create left/right bumper is pressed.

// Like a digital touch sensor.

get_create_lwdrop()

get_create_rwdrop()

get_create_cwdrop()

// Tells us if the Create left/right/center wheel is dropped.

// Like a digital touch sensor.

get_create_lcliff()

get_create_lfcliff()

get_create_rcliff()

get_create_rfcliff()

// Tells us the Create left/left-front/right/right-front cliff sensor value.

// Like an analog reflectance sensor.

get_create_battery_capacity()

// Tells us the Create battery level (0-100).

Create Sensor Functions

Professional Development Workshop
© 1993 – 2019 KIPR255Page : #

Using Create Sensor Functions

int main()

{

create_connect();

while (get_create_rbump() == 0)

{

create_drive_direct(100, 100);

}

create_stop();

create_disconnect();

return 0;

}

What does this say?

Professional Development Workshop
© 1993 – 2019 KIPR256Page : #

Description: Write a program for the KIPR Wallaby that drives the
Create forward until a bumper is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Connect to Create. // 1. Connect to Create.

2. Loop: Is not bumped? // 2. Loop: Is not bumped?

1. Drive forward. // 2.1. Drive forward.

3. Stop motors. // 3. Stop motors.

4. Disconnect from Create. // 4. Disconnect from Create.

5. End the program. // 5. End the program.

Drive Until Bumped

Professional Development Workshop
© 1993 – 2019 KIPR257Page : #

Analysis: Flowchart

Drive Until Bumped

Is not
bumped?

Stop motors.

YESNO

Begin

End

Return 0

Drive forward.

Disconnect from Create.

Connect to Create.

Professional Development Workshop
© 1993 – 2019 KIPR258Page : #

Solution:

Drive Until Bumped

1. Connect to Create.
2. Loop: Is not bumped?

Drive forward.
3. Stop motors.
4. Disconnect from Create.
5. End the program.

Pseudocode
int main()

{

create_connect();

while (get_create_rbump() == 0)

{

create_drive_direct(200, 200);

}

create_stop();

create_disconnect();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR259Page : #

Description: Make the iRobot Create move forward in a straight line
until it comes into contact with another object. Then have it make a
90º turn and again travel in a straight line for exactly 0.9 meters.
Before the program ends, print to the screen the values for the total
angle the create has turned and total distance it has driven.

Connections to the Game Board

Professional Development Workshop
© 1993 – 2019 KIPR260Page : #260Page :

LUNCH

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/WQ8CQ65

https://www.surveymonkey.com/r/WQ8CQ65

Professional Development Workshop
© 1993 – 2019 KIPR261Page : #261Page :

Color Camera

Using the Color Camera

Setting the Color Tracking Channels

About Color Tracking

Camera Functions

Professional Development Workshop
© 1993 – 2019 KIPR262Page : #

Use the camera for this activity
• The camera plugs into one of the USB (type A) ports on the back of the Wallaby.

• Warning: Unplugging the camera while it is being accessed can freeze the
Wallaby, requiring it to be rebooted.

Color Camera

USB Ports

Professional Development Workshop
© 1993 – 2019 KIPR263Page : #

Camera Build

Start with a 2” Standoff attach a 3x5 liftarm to each
end at the hole in the bend with regular screws.

Attach the large bent liftarms using the blue axel-
pins as shown.

Run a 3” headless screw through the holes as shown
and secure it with two nuts.

Professional Development Workshop
© 1993 – 2019 KIPR264Page : #

Camera Build

Wrap the camera around the standoff and headless screw as shown.

Then secure it with another standoff on top of it screwed in with two regular
screws as shown.

Professional Development Workshop
© 1993 – 2019 KIPR265Page : #

Mounting the Camera

Line up the L-bracket holes with the bottom holes of the mount
on the inside as shown above.

Then attach it by running an axle through both pieces of lego
and the bottom middle hole of the bracket and securing the top
of the bracket with a medium screw.

Professional Development Workshop
© 1993 – 2019 KIPR266Page : #

Mounting the Camea

Secure the camera mount to the rest of the robot as shown using two
regular screws.

Professional Development Workshop
© 1993 – 2019 KIPR267Page : #

Setting the Color Tracking Channels

1. Select Settings

2. Select Channels

Professional Development Workshop
© 1993 – 2019 KIPR268Page : #

3. To specify a camera configuration, press the Add button.

4. Enter a configuration name, such as find_green, then press the
Ent button.

5. Highlight the new configuration and press the Edit button.

Setting the Color Tracking Channels

Note: if there is more than one configuration, select one, and
press the “Default” button to make it be the one in use!

Professional Development Workshop
© 1993 – 2019 KIPR269Page : #

Setting the Color Tracking Channels

6. Press the Add button to add a channel to the configuration.

7. Select HSV Blob Tracking, then OK to make this track color.

8. Highlight the channel, then press Configure to edit settings.
• The first channel is 0 by default. There can be up to four: 0, 1, 2, and 3.

Professional Development Workshop
© 1993 – 2019 KIPR270Page : #

Setting the Color Tracking Channels

9. Place the colored object to track in front of the camera and
touch the object on the screen.
• A bounding box (dark blue) will appear around the selected object.

10. Press the Done button.

Professional Development Workshop
© 1993 – 2019 KIPR271Page : #

Verify the Color Channel is Working

11. From the Home screen, press Motors and Sensors button.

12. Press the Camera button.

13. Objects specified by the configuration should have a bounding box (shown in
blue).

Professional Development Workshop
© 1993 – 2019 KIPR272Page : #

• Use the position of the object in relation to the
center x (column) of the image to tell if it is to the left or right.

• The image is 160 columns wide, so the center column (x-value) is 80.

• An x-value of 80 is straight ahead.

• An x-value between 0 and 79 is to the left.

• An x-value between 81 and 159 is to the right.

• Use the position of the object in relation to the center y (row) of the image to
tell how far away it is.

Tracking the Location of an Object

(0, 0) (159, 0)

(159, 119)(0, 119)

RightLeft

(80, 0)

(80, 119)

get_object_center_x(0, 0);

// The x-value of the tracked object.

// Note: number between 0 and 159.

Channel #

Object
0, 1, 2, …

(largest to smallest)

Professional Development Workshop
© 1993 – 2019 KIPR273Page : #

camera_open_black();

// Opens the connection to the black camera.

camera_close();

// Closes the connection to the camera.

camera_update();

// Gets a new picture (image) from the camera and performs color tracking.

get_object_count(channel #)

// The number of objects being tracked on the specified color channel.

get_object_center_x(channel #, object #)

// The center x (column) coordinate value of the object # on the color channel.

get_object_center_y(channel #, object #)

// The center y (row) coordinate value of the object # on the color channel.

Camera Functions

Professional Development Workshop
© 1993 – 2019 KIPR274Page : #

Using Camera Functions

int main()

{

int iteration_count = 0;

int update_errors = 0;

camera_open_black();

while (digital(8) == 0)

{

if(!camera_update())

{

update_errors++;

continue;

}

if (iteration_count > 1000)

{

iteration_count = 0;

camera_close();

camera_open_black();

}

//Code to be executed

}

camera_close();

return 0;

}

Professional Development Workshop
© 1993 – 2019 KIPR275Page : #

Description: Calibrate and program the robot and camera
combination so that it will turn on its axis in response to
Botguy moving to the left or right in front of it.

Connections to the Game Board

Professional Development Workshop
© 1993 – 2019 KIPR276Page : #276Page :

Logical Operators

Multiple Boolean Tests

while, if, and Logical Operators

Professional Development Workshop
© 1993 – 2019 KIPR277Page : #

Recall the Boolean test for while loops and if-else conditionals…

• The Boolean test (conditional) can contain multiple Boolean tests
combined using a “Logical operator”, such as:
•&& And

•|| Or

•! Not

• The next slide provides a cheat sheet for Logical operators.

Logical Operators

while (Boolean test) if (Boolean test)

while ((Boolean test 1) && (Boolean test 2))

if ((Boolean test 1) || (!Boolean test 2))

We put parentheses (and)
around each Boolean test…

Professional Development Workshop
© 1993 – 2019 KIPR278Page : #

Boolean English Question True Example False Example

A && B Are both A and B true? true && true

true && false

false && true

false && false

A || B Is at least one of A or B true?
true || true

false || true

true || false

false || false

!(A && B) Is at least one of A or B false?
true && false

false && true

false && false

true && true

!(A || B) Are both of A and B false? false || false

true || true

false || true

true || false

! negates the true or false Boolean test.

Logical Operators Cheat Sheet

Professional Development Workshop
© 1993 – 2019 KIPR279Page : #

while ((get_create_lbump() == 0) && (get_create_rbump() == 0))

{

// Run code if both bumpers are not pressed...

}

while ((digital(8) == 0) && (digital(9) == 0))

{

// Run code if both touch sensors are not pressed...

}

if ((digital(4) == 1) || (digital(5) != 0))

{

// Run code if one or both of the touch sensors is pressed...

}

if ((analog(3) < 512) || (digital(3) == 1))

{

// Run code if IR sensor reads white and/or touch sensor pressed...

}

while, if, and Logical Operators
Examples

Professional Development Workshop
© 1993 – 2019 KIPR280Page : #

Using Logical Operators

int main()

{

create_connect();

while ((get_create_lbump() == 0) && (get_create_rbump() == 0))

{

create_drive_direct(100, 100);

}

create_stop();

create_disconnect();

return 0;

}

What does this conditional say?

Professional Development Workshop
© 1993 – 2019 KIPR281Page : #

Description: Write a program for the KIPR Wallaby that drives the Create
forward for 1 meter or until a bumper is pressed, and then stops.
• How do we check for distance traveled? Answer: get_create_distance() < 1000

• How do we check for bumper pressed? Answer: get_create_rbump() == 0

• How do we check for that both are true?
Answer: ((get_create_distance()) < 1000) && (get_create_rbump() == 0))

Analysis: What is the program supposed to do?

Connections to the Board Game

Pseudocode
1. Connect to Create.
2. Loop: Is distance < 1000

AND not bumped?
2.1. Drive forward.

3. Stop motors.
4. Disconnect from Create.
5. End the program.

Professional Development Workshop
© 1993 – 2019 KIPR282Page : #

Analysis: Flowchart

Drive for Distance or Until Bumped

Is distance <
1000

AND not
bumped?

Stop motors.

YES
NO

Begin

End

Return 0

Drive forward.

Disconnect from Create.

Connect to Create.

Professional Development Workshop
© 1993 – 2019 KIPR283Page : #

Solution:

Drive for Distance or Until bumped

1. Connect to Create.
2. Loop: Is distance < 1000

AND not bumped?
2.1. Drive forward.

3. Stop motors.
4. Disconnect from Create.
5. End the program.

Pseudocode

int main()

{

// 1. Connect to Create.

create_connect();

// 2. Loop: Is distance < 1000 AND not bumped?

while ((get_create_distance() < 1000) && (get_create_rbump() == 0))

{

// 2.1. Drive forward.

create_drive_direct(200, 200);

} // end while

// 3. Stop motors.

create_stop();

// 4. Disconnect from Create.

create_disconnect();

// 5. End the program.

return 0;

} // end main

Source Code

Professional Development Workshop
© 1993 – 2019 KIPR284Page : #

Reflection: What can be noticed after the program is run?

• What happens if the Create right bumper is pressed before the Create travels a
distance of 1 meter?

• What happens if the Create right bumper is not pressed before the Create
travels a distance of 1 meter?

• What happens if the Create left bumper is pressed instead?

• How could the program check to see if the Create left bumper is pressed?
Answer:

while ((get_create_distance() < 1000) && (get_create_lbump() == 0) && (get_create_rbump() == 0))

Drive for Distance or Until Bumped

Professional Development Workshop
© 1993 – 2019 KIPR285Page : #

Mechanical Design

• Sometimes problems can be solved not through
modifying the code, but rather by making changes to the
mechanical design of the robot(s).

• The next couple slides provide some examples

• Additional resources may be found on the team home
base and online

• For example a great intro to Lego® technic design
patterns can be found at:

http://handyboard.com/oldhb/techdocs/artoflego.pdf

http://handyboard.com/oldhb/techdocs/artoflego.pdf

Professional Development Workshop
© 1993 – 2019 KIPR286Page : #

Counterbalance

motor/servo

coins

• Motors and servos have limited power

• Struggling to lift a structure?

• Use coins as a counterbalance

Professional Development Workshop
© 1993 – 2019 KIPR287Page : #

Gearing and Gear Trains

By “combining” gears into a “gear train”, using gears of
varying sizes can INCREASE or DECREASE the speed and
power (torque) of the motors!

• If the motor gear is larger than the next
gear in the “gear train” the “driven gear”
spins FASTER but at the expense of LESS
torque (power).

• If the motor gear is smaller than the next
gear in the “gear train” the “driven gear”
spins SLOWER but with MORE torque
(power).

driven gear

motor/servo

driven gear

motor/servo

Professional Development Workshop
© 1993 – 2019 KIPR288Page : #

Gears to Increase Servo Range

• If a larger gear is attached to the servo spline and the
next gear in the “gear train” is smaller the range of the
servo is increased

• If the driven gear has ½ # of teeth as the servo gear, then it
doubles (x2) the range of the servo (now 360 degrees instead of
180 degrees).

driven gear

Servo gear

Professional Development Workshop
© 1993 – 2019 KIPR289Page : #289Page :

Resources and Support

Team Home Base

Social Media

T-shirts and Awards

What to do After the Workshop

Professional Development Workshop
© 1993 – 2019 KIPR290Page : #

Botball Team Home Base

Found at www.KIPR.org

http://homebase.kipr.org/

Professional Development Workshop
© 1993 – 2019 KIPR291Page : #

KIPR Support
• E-mail: support@kipr.org

• Phone: 405-579-4609

• Hours: M-F, 8:30am-5:00pm CT

Forum and FAQ
• Site: www.kipr.org/Botball

• Content:
• Botball Curriculum
• Botball Challenge Activities
• Documentation Manual and Examples
• Presentation Rubric & Example Presentation
• DemoBot Build Instructions & Parts List
• Controller Getting Started Manual
• Construction Examples
• Hints for New Teams
• Game Table Construction Documents
• All 2019 Game Documents

Botball Team Home Base

mailto:support@kipr.org
http://www.kipr.org

Professional Development Workshop
© 1993 – 2019 KIPR292Page : #

Access the Wallaby documentation by selecting the Help button in the KISS IDE

Wallaby Library Documentation

Professional Development Workshop
© 1993 – 2019 KIPR293Page : #

Social Media

Professional Development Workshop
© 1993 – 2019 KIPR294Page : #

Social Media

Professional Development Workshop
© 1993 – 2019 KIPR295Page : #

Tournament Awards

Professional Development Workshop
© 1993 – 2019 KIPR296Page : #

• Tournament Awards
• Outstanding Documentation

• Seeding Rounds

• Double Elimination

• Overall (includes Documentation, Seeding, and Double Elimination)

• Judges’ Choice Awards (# of awards depends on # of teams)
• KISS Award

• Spirit of Botball

• Outstanding Engineering

• Outstanding Software

• Spirit

• Outstanding Design/Strategy/Teamwork

Tournament Awards

There are a lot of opportunities for teams to win awards!

Professional Development Workshop
© 1993 – 2019 KIPR297Page : #

1. Recruit Team Members
If team members haven’t been recruited, then use the materials from the
workshop to show to interested students.

2. Hit the Ground Running
• Do not wait to get started—time is of the essence!

• There is a limited build time before the tournament.

• The workshop will still be fresh in the mind, so start now!

• Plan on meeting sometime during the first week after the workshop.

What to Do After the Workshop

Professional Development Workshop
© 1993 – 2019 KIPR298Page : #

3. Plan Out the Season
• Students will not inherently know how to manage their time. Let’s face

it—it is difficult for many adults!

• Mark a calendar or make a Gannt chart with important dates:
• 1st online documentation submission due

• 2nd online documentation submission due

• 3rd online documentation submission due

• Tournament date

• Set dates and schedules for team meetings.

• Plan on meeting a minimum of 4 hours per week.

What to Do After the Workshop

Professional Development Workshop
© 1993 – 2019 KIPR299Page : #

4. Build the Game Board
• If building a full game board is not an option, then try building ½ of the

board.

• Tape the outline of the board onto a floor if the right type of flooring is
available.

5. Organize the Botball Kit
• Organized parts can lead to faster and easier construction of robots.

6. Understand the Game
• Go over this with the students on the first meeting after the workshop.

What to Do After the Workshop

Professional Development Workshop
© 1993 – 2019 KIPR300Page : #300Page :

Thanks, Have a Great Season!

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/WQ8CQ65

https://www.surveymonkey.com/r/WQ8CQ65

