
Greater DC/Virginia Region

Period 2 Code Review Document

Introduction:
The following code was designed for our create, named Big Roomba. Big Roomba’s purpose is
to sort two color poms (red and pink) into the furrows. The code for Big Roomba was written by
Devin Frost and reviewed by Jacob Barats. The review was performed on March 4th, 2017.

Best Practices Checklist:

✔ ​Code uses functions in order to organize itself
x​ Code has comments that document purpose of its functions
✔ ​Code includes comments in general
✔ ​Variable names are descriptive and represent their in code use !
x​ Code avoids un-named numeric constants other than 0,1, or 2
✔ ​Code is formatted to show the flow of control !
✔ ​Comments that are no longer in use have been removed !

Many of our functions purposes aren’t documented in comments because their names are very
self explanatory. While we have un-named numeric constants other than 0, 1, or 2, we are
planning on naming them in the next code revision.

Reliability:

We use error detection and recovery code in our moving straight functions. To make sure that
the robot goes straight, we use an if else if else statement paired with the gmpc(), checking
which wheel has passed more ticks. If the left wheel has more ticks, it means that the robot has
begun to drift left, so we add power to the right wheel. If the right wheel has more ticks, it
means that the robot has begun to drift right, so we add power to the left wheel. If both ticks are
actually the same we have both of the motors continue at the same power. It’s important to keep
in mind that one of the wheels goes faster than the other. To improve the reliability of the
straight function, we can place more power on the wheel that naturally goes slower when the
number of ticks passed are the same, so that we can continue going perfectly straight for even
longer.

Maintainability:

Overall, our code can be a bit tricky to understand at times. While we use many functions, it can
be easy to lose track of where the robot is when that function is being called. For example, take
the turn() function. We may see it in the code, but we have to read through all of the code to see
where this turn is taking place. On the other hand, our code is very modifiable. Because of our
large emphasis in functions, if we discover that say the black line following is slightly off, we can

just change the code for it in one place as opposed to changing it in every place where the robot
line follows. Because many of the functions utilize the create’s built in sensors instead of
external ones, the code is highly reusable on any create. To make our code easier to
understand, we could use more comments in the main() function. This would take out the
tedious task of looking through all of the code to figure out where the robot would be on the
board when the function is called. Additionally, each create’s distance counters are slightly off.
In order to make the code more reusable, we could have have more inputs in our functions,
accounting for these variations in different creates.

Effectiveness:

The create robot is meant to collect the orange poms from the hopper and then obtain the pink
poms from the other robot, sorting these two colors into the furrows. The create code is highly
effective at collecting the poms. It uses precise movement functions, implementing the built in
sensors (e.g. bumpers and degree counters) to navigate the board and collect the poms. The
code is not very effective at sorting the poms once obtained. Because this is our first time as a
team using camera code, we have many lines which are redundant and often use timers which
are unnecessarily long, slowing the entire sorting process down. The effectiveness of the sorting
code could be easily improved by removing unnecessary camera_update() functions and cutting
down on the lengths of msleep() functions.

Above is the inefficient code

Above is the efficient code

