
�1

Explorer Post 1010
Botball Team 16-0160
Greater DC Region

Period 2 Software Design
Introduction
- The segment of code reviewed below describes the omni chassis turns and straight line

movement. In short the navigation functions and associated global variables.
- This segment was selected because of the challenge the omni chassis and omni chassis wheels

in specific provided. Since they were new parts and in a style no one had ever worked with
they challenged the programers to learn to accurately steer them.

- This code was reviewed Wednesday, March 23rd, the review being written Saturday, March
26th.

Best Practices Checklist
- Code does indeed use functions to organize code so that different segments can both be

customized and reused.
- Code does include comments to facilitate different programmers working on the same piece of

code; especially when another programmer is working on a different piece of code. This also
helps builders to understand whats going on.
• By including comments specifying what a specific function does the function can be more

easily reused because its purpose is always clear. (yes this is present)
• By labeling the functions arguments and return values the programmer always knows how

to use a specific function should she/he desire to employ it (also present)
- All variable names are descriptive and explain their purpose in the function so that they can be

reused throughout the program without too much effort. Thus the code is more efficient and
practical to write.

- The code makes good use of named constants so that important values can be repeated in a
logical manner (and so the programmers to not have to go back and recheck certain values).

- Code is appropriately formatted not only to show flow of control (which in combination with
proper comments make code easy to read) but to help programmers identify errors.

- Any blocks of code that are not in use will have been deleted during code revision (occurring
constantly at random intervals). Without large and confusing useless blocks of code the
programmers can better understand the bigger picture.

- The issues that the code does have are making sure that the code does not rely on large
hardcoded sections. The team is making an effort to use large blocks of code, created for a
specific task and creating with it a more useful function that can accommodate multiple
circumstances by passing to it only a value that is specific to a certain situation.

�2

Code Analysis Section

Code Analysis Section - Reliability
- Most error detection became apparent through attempting to run the robot; this was doubly

useful because it gave the builders insight into how the built appendages perform. This is
because the two tasks are very closely aligned; if either the effector or code does not perform
it becomes very apparent shortly into testing and not only does it become apparent but it is
clear with piece (i.e. effector or code) is not working.
• When errors are detected through this message the team employs error statements. By

printing text to the screen when certain conditions are not called the programmers can
immediately notice the location of an error. These error statements are also numerated (with
the corresponding location in the code commented accordingly) so that the precise location
where something went wrong is ridiculously easy to find.

- This code is extremely reliable because of its use of functions. Functions are obviously
incredibly important in any situation but movement, which can vary a lot but often only
changes only by changing a value. In this case the value changed would be a parameter and
the parameter to be sent into the function is saved as a global variable. Thus what was
originally a long and arduous process that required constantly rechecking to find which
different variables needed to be hard coded is reduced to a nice and simple function that is
extremely multipurpose.

- Since the function is multipurpose (as a result of having a variety of parameters that allow it
to suit different situations) the functions themselves are actually very simple. With a simpler
function it is harder for the code to mess up; there are no hidden conditions that the code could
trip up on (unlike when there are useless blocks of code in a program as then they can conceal
small details that run the risk of ruining the robots performance).

- One of the few issues that the robot had was that the robot movement and the added challenge
of climbing a crater rim called for more conditions than a simple switch could account for.
Thus if the robot did not know how to perform in every situation its reliability is greatly
reduced. This issue was resolved by increasing the number of parameters that the function
takes in because instead of just having the switch now the more random variables are taken
care of.

Code Analysis Section - Maintainability
- The reviewed code (below) is easy to understand, modify, and reuse because of how it makes

use of all good coding practices. By having all programmers on the team make good use of a
specific set of formatting guidelines when other people work on shared coding tasks they can
easily understand the flow of the code. Another technique employed to improve
communication between programmers is that people add comments that explain who was
working on each specific part of the code and what the work was done. That way of someone
does not understand they know exactly who to ask (of course extensive comments heading and
throughout help too). In short, communication between team members and extensive

�3

comments (as well as overall correct layouts) allows for all coders to understand the purpose
of the code.

- The code is easy to modify because it makes use of a simple set of functions that are extremely
multipurpose. By simply changing the values inputted into the function the entire code can
easily be modified to suit the builders ever-changing needs. This usage of functions also
makes the code very reusable. These functions themselves can be very complex as they can
occasionally make use of a lot of mathematics to achieve various goals. To remedy this
problem the pseudo code often written for such functions is left in as a comment as a header
for the program.
• This header also has another purpose; it labels the return types and parameters the function

uses. This comment is also copied and found at the very top of the program in a list. This
easily tells whoever is modifying the doc not only exactly what they have available to use
but also how to use it.

-The maintainability of the code could be improved by making sure that all extra comments are
periodically removed. While it is extremely useful at fist to know exactly who had done what,
after a while the older changes become obsolete and make the code more confusing to work with
because they can get confused with newer changes. While the comments serve as communication
for the code, in some cases throughout the code they have been overused. This issue will be
resolved by using having programmers remember to delete old comments after a few weeks,
ensuring that the code maintains an organized state.

Code Analysis Section - Effectiveness
- The reviewed code does accurately and correctly perform its assigned task… And then takes it

one step further. By offering a switch and multiple statements the originally difficult
movement of the omni chassis is consolidated into one function. Thus this function not only
effectively solves the issue of omni chassis movement but it removes the possibility of there
being any issues in the future.

- This code correctly performs its given task by performing any given task of a similar nature.
As the given task was to get the omni chassis to move, a function that supports any and all
omni chassis movement is as correct as it gets. Furthermore the code is effective and efficient,
so the risk of there being errors based on a small and hidden condition, lost under useless
statements is greatly reduced.

- This code is additionally effective by assigning at the beginning global variables that remove
the need for constantly hardcoding in various numbers. By having variables that not only
reduce error the code can be more effectively used because they are labeled with exactly the
movement they are required to perform.

- The code (seen below in the “before” section) had various notable issues, the most important
of which being that since it was a new coding concept and not every programmer fully
understood exactly how to use it, the direct usage of the omni chassis movement found
throughout the program was confusing. There was also various pieces of unused code found
throughout with only increased confusion. Topping all that off with too many comments, most
of which only pertaining to whatever the programer was planning and not what the code

�4

actually needed to perform, the old code, while mostly capable of performing the given tasks
was miserable to work with and needed revision and improvement.

Before Code
 drive(0,90,800,900); //90 degree turn right (CW)
 drive(0,90,800,900); //turn CW so arm faces botguy
 //mavomni(2, 900, 2400); //turn CW so arm faces botguy
 armout(); //position arm
 grab(); //grab botguy
/*
Talk about adding segment for claw usage… (to do)
*/
 printf("Botguy grabbed!\n");
 mavomni(1, 500, 700); //back up a little to turn
 break; //continue with code}
 }
/*
 /*Get onto the Crater Rim*/
 printf("Get to the Crater Rim!\n");
 drive(0,-90,800,900); //90 degree turn left (CCW)
/* Remember to label the global variable*/
 //mavomni(3,900,1200); //turn CCW towards ramp
 printf("Go up the ramp!!\n");
 while(digital(touch)==0){ //until touch sensor is hit
 //linefollow();
 mavomni(0, 600, 400); //drive up the ramp
 if(digital(touch)==1){ //when touch sensor is hit
 ao();
 mavomni(1, 500, 700); //back up a little to turn
 drive(0,90,800,900); //90 degree turn CW towards center
field
 //mavomni(2,400,200); //turn CW towards center field
*/
- Above is a section of code. As described above it is covered in comments and impossible to

trace because it does not always follow proper if statement and loop formatting. Clearly it does
not follow the “Best Practices Checklist”, mostly because it is only one step above pseudo
code. Still in the process, there are even remnants of planning all in the programmer’s (an
unidentifiable programmer because people have not added names and dates modified at this
point) effort to map out their thoughts. The revised code below is light years better.

Improved Code
//Created by Kat A. Last modified: 19 Mar 19:35
#define left 0 //front left motor port 0
#define right 1 //front right motor port 1
#define back 3 //back motor port 3

void mavomni(char type, int vel, int time)

�5

{
 switch (type)
 {
 case 0: //driving forward
 printf("driving forward with mav %i for %i ms\n", vel,
time);
 mav(left,vel + 200);
 mav(right,-vel);
 msleep(time);
 ao();
 break;

 case 1: //driving backward
 printf("driving forward with mav %i for %i ms\n", vel,
time);
 mav(left,-vel);
 mav(right,vel - 300);
 msleep(time);
 ao();
 break;

 }
- Obviously the code above is much better than its predecessor (most probably because the

programmers had a moment to finalize their thoughts and work to improve its efficiency).
Unlike the first excerpt this code is a function, allowing for the work that has already been
done to shine through and the same purpose be reused. The included switch allows for a
variety of situations to be solved, even if all the cases are similar. With each case being
slightly similar, instead of having to continually research not only how to use omni chassis
movement you also never have to worry about what slight change in values would be needed
to get the code to work as planned.
• The global variables also aid in this because they incur that you don't have to remember

even what change needed to be made to get the code to work, simply typing in key phrases
such as “right” and “left” would solve the problem.

