
Code Convention and version control help us to success in Botball

Zebu Lan

USTB Robot Society Team 1

Code Convention and version control help us to success in Botball

1 Introduction

Clean and well-structured code boosts the collaboration of a team. As we all know,

team work is the most common and effective way to achieve an objective. In the

Botball project, the robot programming work is commonly a team work. Writing clean

and well-structured code and posing proper and essential comments help prevent the

potential bugs that might occur in the program and testing stage. Well-structured code

helps other people to quickly understand the code as well, which also help to debug.

Although messy codes do not absolutely equal to more bugs and long debugging time,

clean and well-structured code provided a good foundation for subsequent program

optimization.

Based on clean and well-structured code, the maintenance cost can be reduced

dramatically. Robot design is a process where robot mechanisms and structures would

be adjusted or even rebuilt frequently. In this process, the computer program has to

follow the changes as well. If the code is not under a clean and well-structured

situation, the changing, code refactoring and corresponding test work will become a

nightmare for everyone.

2 Code convention our team follows

A set of clear and simple code conventions can help a team to reduce most of the

misunderstanding when team members are working together, and help to increase the

maintainability and reliability of the code which is essential to the success in Botball.

We simply list 5 rules need to be followed, which can prevent most of the common

errors from happening.

2.1 Naming

Naming is critical to a program. A reasonable naming convention can help us to

save the time which is spent on understanding the logic of the program. It can also

effectively help us to make changes to the code.

For example, the small top-hat sensors were used in our robot to track the black

lines. In our program, the variable which is the left sensor is named LeftSensorValue

and right sensor is named RightSensorValue. Code blocks with good naming and bad

naming are shown in Fig 2-1 and Fig 2-2. Although the code block in Fig 2-2 looks

longer than the corresponding one in Fig 2-1, but it reduces most of the “magic values”

which makes the code more understandable.

Fig 2-1 Code without good naming

Fig 2-2 Code with good naming

In this way, people can clearly understand the meaning of the function and the

debug process becomes relatively easier. Moreover, when there is any change of the

hardware happening, i.e. the motor port is changed, programmers don’t need to go

through the whole program to change the port value, but only need to change a

constant value, which helps to increase the maintainability of the code.

2.2 Indent

In order to improve the readability of the code, we have an indent convention in

our team. Please refer to Fig 2-3 as an example.

It is quite clear that the code in this program has a good indent style. Code in

main function and while loop indent to different level, marked with a pair of curly

braces. In this way, people can easily understand under which code block a

statement is, which helps our team member to read the code especially when there is

nesting loops in our code.

Fig 2-3 Code with good indent style

2.3 Case

In our program we have a lot of different symbols, i.e. local variables, global

variable, functions, constant values. To easily distinguish them from each other, we

designed the following case convention in our team. Please refer to Table 2-1 for the

detail.

Item Case

Local variable First word in lowercase, other words

first letter capitalized

Global variable First letter capitalized

Function Lowercase words connected by

underlines

Constant value Capitalized words connected by

underlines

Table 2-1 Case convention

 Below are some examples from our code:

 Local variable: counter

 Constant value: LEFT_MOTOR_PORT

 Function: drive_turn()

By strictly follow the above rules, our programs are easier to read.

2.4 Function

When you find there are some pieces of code appear more than one time in your

code, it indicates that you may need to encapsulate those code into a function. Using

functions can make the code more reusable and easy to maintain.

When we use functions, we separate the declaration and the implementation of

the function into two parts. The declarations of functions are placed before the main()

function, while the implementations are put behind the main function. Fig 2-4 is an

example of our function.

Fig 2-4 Example of user function

This program is used to make the car go as a square route, where the function

“drive forward” was used only one time, however it may be used many times in other

tasks. For this problem, using encapsulation can solve it perfectly. The design method

is to subdivide the system functions into simple functional module, so that function

statements generally are no more than fifty lines. From this program we can draw a

conclusion that we should use modularization to encapsulate the function module as

general functions where declarations are put in the file header and the implementation

codes are put behind the main function, if it will be called more than two times.

2.5 Comments

Comments are useful when sharing work with teammate, and it also remind the

programmer himself how code is originally designed to work. We normally put a

short sentence at the beginning of a program to indicate the function of this program.

And comments are placed at main statements, i.e. loop statements, conditional

statements. Fig 2-5 is an example of the comments we add to our code.

Fig 2-5 Example code of comments

2.6 Version Control

Although version control which refers to more sophisticated technologies and

methodologies is normally not a code convention issue, we have our own simple but

effective version control method in our team, which helped us to well manage our

code during several months’ Botball season. As the program in a Botball team is

relatively simply, and the team is a small team compared with most software

companies. We found it is not necessary to use CVS, SVN or Git to manage our code.

Instead, we follow a naming convention of the C program files, to make the version

management work easy to apply.

Our programs are named as the following style: Function_Author_Date_Version.c.

For example, we meet up on 16
th

 May and wrote a program to control the robot to

walk up the slope and sweep the balls, we had 3 major updates and several minor

updates during the day. The file name will be Walk_Sweep_Zebu_5_16_V3.1.c. In

this manner we achieved well management of our code.

3 Conclusion

Follow several simple rules and write clear and consistent code is essential to

Botball teams. It can help our team to really work in an engineer’s way, which is the

most meaningful experience we got during the whole process. No matter what

programming language we use and how sophisticated our future task will be,

following a proper designed code convention will largely facilitate team work and

make the code maintainable and reliable.

