
Team 192 – Software Design Documentation for the iRobot Create

 The architecture of our program for our iRobot Create, the robot which obtains Botguy, is

essentially a simple series of commands which direct the robot to do one task at a time. Each task is

begun when the previous task is assumed to have been completed. Tasks are sensor-driven, loop-based,

or time-based, depending on what needs to be completed.

Tasks Include:

 Open claw: Uses the function “set_servo_position” to manipulate the servo motor and open the

claw a certain degree. Also uses an if/else function to take into account the current position of

the claw and which direction it needs to move in.

 Close claw: Uses the function “set_servo_position” to manipulate the servo motor and close the

claw. Also uses an if/else function to take into account the current position of the claw and

which direction it needs to move in.

 Raise arm: Uses the function “set_servo_position” to raise the arm attachment to a specified

level. Also uses an if/else function to take into account the current position of the claw and

which direction it needs to move in.

 Lower arm: Uses the function “set_servo_position” to raise the arm attachment to a specified

level. Also uses an if/else function to take into account the current position of the claw and

which direction it needs to move in.

 “create_mrp”: A drive function which effectively replicates the mrp function for the CBC, which

is quite useful as it allows for programming the CBC and the iRobot Create in the same manner.

 Various light sensor tasks: A while loop is used to instruct the robot to continue its current task

until the left light sensor, the right light sensor, either sensor, or both sensors hit a line.

 Align robot: A while loop is used to read input from the light sensors and keep the robot driving

on a certain line of black tape.

Tasks are ordered in such a way that the robot is able to find and obtain Botguy easily, as well as obtain

the wind turbines. Many of the functions which utilize servos control the attachment which grabs the

turbines. In the program which will be discussed in more detail, the one which allows the robot to

obtain Botguy, servo motors will not be mentioned because the claw attachment which retrieves Botguy

is controlled by a single IFI motor.

Sensor Functions Used in Botguy Program

// Waits until either light sensor hits a line.

void until_line_either() {

 while (analog10(10) < THRS && analog10(9) < THRS) msleep(10L);

}

// Waits until both line sensors hit a line.

void until_line_both() {

 int had_left = 0, left = 0, had_right = 0, right = 0;

 while (!had_left || !had_right) {

 left = analog10(10) >= THRS;

 right = analog10(9) >= THRS;

 if (left) had_left = 1;

 if (right) had_right = 1;

 msleep(10L);

 }

}

Note: Analog 10(10) is the left light sensor, and analog10(9) is the right one.

Flowchart with Code: Obtaining Botguy

 //begin program

// get initial IR position
// arc to Botguy
create_drive_direct(-430, -500);
msleep(500L);
iro = analog10(8);
msleep(500L);

// steal Botguy and push overturned
cups with poms
mrp(3, 1000L, 300L);
// get out of the way
create_drive_straight(-400);
msleep(900L);

// arc from Botguy
create_drive_direct(-500, -430);
// until we reach the drop-off
time = mseconds() + 2000L;
while (analog10(8) > iro - 350 &&
mseconds() < time) msleep(20L);

// all done!
ao();
create_disconnect();
disable_servos();
return 0;

// use light sensors to navigate
// detect first line
until_line_both();
msleep(500L);
// second line
until_line_either();
create_stop();

// push Botguy, cups and poms out of
the way
create_spin_block(200, 16);
create_mrp(-200, 200);
create_mrp(200, 200);
create_spin_block(200, -14);

// turn towards the slope
create_spin_block(300, 3);
create_spin_block(300, -95);

