
© 1993-2009 KIPR 1

Botball 2009

Educator’s Workshop
While you are waiting:

1. Install KISS-C

2. Install the CBC driver

1. This is the same FTDI USB to serial driver that was used on the XBC

2. If this has already been installed on your machine, you do not need to

reinstall it. Reinstalling it will not hurt anything

3. The installer is part of the Botball Tools install for Windows

4. One the Mac, select the appropriate installer from the folder

3. If you are using a Mac and do not have the developer tools

installed, flag down the instructor so it can be taken care of

4. If you are not sure how to do the previous steps please ask one of

the staff!

© 1993-2009 KIPR 2

Botball 2009

Educator’s Workshop

v1.5 2009.2.13

© 1993-2009 KIPR 3

2009 Botball Sponsors

Yahoo! Employee Foundation Kauai Economic Development Board

© 1993-2009 KIPR 4

KISS Institute thanks the following venue sponsors

who support Botball by donating workshop and/or

tournament venues free of charge:

• University of North Florida - Florida Region

• Southern Illinois University Edwardsville - Greater St. Louis Region

• University of Maryland, College Park - Greater DC Region

• Grandville Boosters and Middle School - Michigan Region

• Hawaii Convention Center - Hawaii Region

• MITRE and the University of Massachusetts Lowell - New England Region

• Polytechnic University - New York/New Jersey Region

• University of Oklahoma - Oklahoma Region

• University of Pittsburgh - Pennsylvania Region

• CMU Qatar Campus - Qatar Region

• University of San Diego - Southern California Region

• University of Houston - CORE - Texas Region

© 1993-2009 KIPR 5

Botball 2009
©1993-2009 KISS Institute for Practical Robotics

written by the

the staff of KIPR and the Botball Instructors Summit participants

© 1993-2009 KIPR 6

Tutorial Schedule:
• Day 1:

– Robots, Botball and design
projects

– Botball related activities

– KISS-C programming

– Your first programs
• kissSim simulator

• CBC and Create

• Simulated robot

– Variables and data in C

– Program flow/repetition

– Create movement functions

– C functions in general
• Building your own library

• Move and turn

– Demobot Build

• Day 2:
– Game Review

• Robot Documentation

• Building Rules

• Game Challenge

– Using tournament software

– About the CBC

– CBC Color Vision

– Sensors, Create, Motors

– Using Demobot

– Motor functions and robot
programming

– Project design

– Checkout and wrap up

© 1993-2009 KIPR 7

What is a Robot?

Wikipedia Definition:

• A robot is an electro-mechanical or bio-mechanical device or
group of devices that can perform autonomous or
preprogrammed tasks.

Computing Dictionary Definition:

• A mechanical device for performing a task which might
otherwise be done by a human, e.g. spraying paint on cars.

Synonyms:

• automaton, golem
–see also: android, humanoid, mechanical man, mechanism

© 1993-2009 KIPR 8

Levels of Autonomy

• Remote control

– Battle bots

• Teleoperation

– Robot sensor feedback, operator uses a joystick
or other device to instruct the control sequence

• Tele-presence control

– Exoskeleton or VR control

(operator mapped to robot)

• Semi-autonomous

– Operator provides high-level goals and

robot on its own seeks to accomplish the goals

• Autonomous

– Robot on its own with multiple computational

processes in parallel; emergent behaviors

© 1993-2009 KIPR 9

Basic robot elements

© 1993-2009 KIPR 10

People Robots

Bones Mechanical Structure

Muscles Effectors

Senses Sensors

Digestion/Respiration Power

Brain Computer

Knowledge Program

Human vs. Robot Subsystems

© 1993-2009 KIPR 11

Structure

Robot Structure

– Carries all the forces exerted

 by the robot and the

 environment

– Joints in structure normally

 have effectors attached

– Holds sensors in position

© 1993-2009 KIPR 12

Effectors

• Used to change the state of the robot

• Used to change the state of the world

• Examples:

– Motors, thrusters, arms, or legs

– Voice synthesizers, buzzers, and lights

– Serial lines, com ports, radios

© 1993-2009 KIPR 13

Sensors

• Proprioceptive sensors

– Report on the current

state of the agent

– e.g. encoders, gyros,

low-voltage sensors

• External sensors

– Report on the current

state of the world

– light sensors, range

sensors, touch

sensors,...

© 1993-2009 KIPR 14

Power

• The power source

– Batteries, solar panels

– Springs, hydraulics, pneumatics

– Nuclear reactor

• Power distribution

– Wires

– Busses

• Power management

– Regulators

– Converters

© 1993-2009 KIPR 15

Computation

• Used to interpret sensor values;

perception

• Used to generate proper effector

commands

• Used to project effects and plan

actions

• Must be low power

• Must be interfaced to proper

sensor and motor circuitry

© 1993-2009 KIPR 16

Information

• Internal Information
– How to interpret sensor

values

– How to generate effector
commands

– Internal state & history

• External Information
– World, user & predictive

models

• Program
– Determines robot actions

– Forms robot plans

– Debugging - introspection

© 1993-2009 KIPR 17

Botball Robotics

© 1993-2009 KIPR 18

Botball Robots Are Real Robots

• Structure:

• Power: rechargeable

batteries

• Effectors:

– Gear head motors

– Servo motors

© 1993-2009 KIPR 19

Botball Robots are Real Robots

• Sensors: 30+ sensors of

many different types

• Computation: 2

microcontrollers

• Information:

C programs written

by the students

© 1993-2009 KIPR 20

CBC v.1

• 8 digital IO

• 8 10-bit analog inputs

• 4 servo outputs

• 4 PID motors with BEMF

• 1 TTL serial port

• 2 USB A ports

• USB connection to PC

• 1 physical button

• Integrated battery and charge
system

• Speaker & microphone

• 320 x 240 color touch screen

• Runs LINUX

© 1993-2009 KIPR 21

Botball is an R&D Design Project

• Botball involves the Design Process

• Botball involves team management and

organization

• Botball involves research

• Botball involves documentation

• Botball involves schedule and resources

• Botball produces a product: your team of robots

© 1993-2009 KIPR 22

• Botball provides your team with just about all of the parts and

software needed to complete the project.

• Botball provides teams with very specific requirements

documentation

• Botball has an infinite number of possible solutions -- if your

team runs into a technical problem, there are lots of other ways

to solve the problem.

• Through documentation requirements and scheduled updates,

the Botball program helps keep your team on a schedule that

will yield a functioning robot solution

The Botball program is designed to

produce a successful Project Outcome

© 1993-2009 KIPR 23

Botball

• Educational Goals:

– Technology awareness

– Systems engineering

– Mechanical principles

– C programming

– Design and creativity

– Scientific method

– Learning the invention process (iteration…)

– Documenting your work (on-line)

© 1993-2009 KIPR 24

Botball is NOT Battlebots

• Robots are autonomous
– there is no radio control

– robot’s behavior is based on your program and
feedback from sensors

• Robots do not try and destroy other robots (and
the game makes attempts counter productive)
– they try to out maneuver opponents

– they try to out think their opponents

– they try and do the main task

© 1993-2009 KIPR 25

Botball is a Student Activity...

• Botball robots are student designed, built
and programmed

• Students work in teams

• Mentors are there to answer questions, point
students to resources, act as facilitators, etc.

• Teachers & mentors should be able to
complete their role in Botball with their
hands tied behind their back!

© 1993-2009 KIPR 26

Botball Related Activities

© 1993-2009 KIPR 27

Beyond Botball Tournament

• Beyond Botball is an activity for those beyond Botball age
(college students, adults, mentors, teachers, researchers,
etc)

• The International Beyond Botball Tournament is held each
year in conjunction with the Global Conference on
Educational Robotics (GCER).

• Beyond Botball team entry forms and conference
registration can be found at www.botball.org

• The 2009 Beyond Botball Tournament will be held in
conjunction with GCER 2009 July 1-5, 2009 at the
National Conference Center in Leesburg, VA

© 1993-2009 KIPR 28

2009 Beyond Botball Board

Starting Box A

Starting Box B

Level 2 A

Level 3 A

Level 2 B
Level 3 B

Starting light

Houses

(filled with two toxic mortgages each)

Gated Community

Government Funds

Botguy

© 1993-2009 KIPR 29

And If This Makes You Wonder What

the 2009 Botball Game Board is Like

© 1993-2009 KIPR 30

Objective: Create a CAD model and animation of your

 Botball® robot in action.

Eligibility: Open to all Botball® teams.

Deadline: June 19, 2009

Winners will be announced at GCER. Check your team

Home Base for more information.

GOINGGOING

ON NOW!ON NOW!

© 1993-2009 KIPR 31

Solidworks CAD models of virtually every kit

piece are on your team USB stick. The

Solidworks CAD system is included with your

kit.

© 1993-2009 KIPR 32

(Global Conference on Educational Robotics) http://www.botball.org/current-season/GCER/

Where: National Conference Center in Leesburg, VA

(about 35 miles from Washington, D.C.)

© 1993-2009 KIPR 33

When: July 1st - July 5th. Pre-conference activities June 30th

Who: Middle school and high school students, educators, robotics
enthusiasts, and professionals from around the world.

ALL TEAMS ARE INVITED!

Why: Fun and Fireworks in Washington D.C.

 Meet and Network with students from around the country and world.

Talks by internationally recognized robotics experts from academia, government
and industry

 Teacher, Student, and Peer Reviewed Track Sessions

 International Botball Tournament

 Beyond Botball™ Tournament (Botball for grown-up kids!)

 Autonomous Robotics Showcase

© 1993-2009 KIPR 34

Research and Design

Website Challenge

• National website design competition

• Middle School and High School Divisions

• Winners receive $1,000 travel grant for GCER

• Winners are automatically accepted to submit a
paper for GCER which will be included in
conference proceedings

© 1993-2009 KIPR 35

Research and Design

Website Challenge

• Previous Challenges included:
– Bionic prosthesis

– Feeding the world - Saving the Environment

– Robotics in Lunar Exploration

– Household Robotics

Watch for next year’s challenge,

which will be released this Spring,

enter and showcase your talents

© 1993-2009 KIPR 36

KISS-C: the C Programming

Environment used in Botball

© 1993-2009 KIPR 37

KISS-C Software Package
• The KISS-C software is “donation ware”

– It is free and can be freely distributed and used for personal and educational

purposes

– If you like it and are looking for a tax deduction, please consider the KISS Institute

– If you would like to use KISS-C in a commercial product, contact the KISS Institute

about licensing

• The latest version may be found at:

– http://www.botball.org/educational-resources/

• KISS-C is a C IDE that uses the standard Gnu C compiler (gcc) to produce the

program to be run on the robot controller

– Implements the full ANSI C language

– Can drive the iRobot Create from your PC

– Interfaces to the CBC

– Interactively guides hardware setup requirements

– Provides an editor and on-line documentation

– Provides an interactive environment with graphical simulator for testing and

debugging

© 1993-2009 KIPR 38

Setting Up

• If a CBC robot controller is being accessed, KISS-C can be

used to produce the program for it to use

• The KISS-C editor and robot simulator can be used

whether or not a robot controller is connected

• Programs can be checked for syntax errors such as typos

from within the KISS-C interface

• To check for logic errors you:

– Can simulate execution of your program using KISS C’s built in

graphical simulator for the CBC/Create, or

– Attach a CBC controller and try running your program on it

© 1993-2009 KIPR 39

To Install KISS-C

• On a Mac OSX (10.3 and higher)
– Double click on KISS-2.dmg file

• The KISS-C folder can be placed in your Applications folder, or
anywhere else convenient

• Note: keep the app and the library folders in the same KISS-C folder
(programs you write can be kept wherever you wish)

• Note: KISS-C on the Mac makes use of the Apple Developer Tools (can
be installed from the DVD that came with your OS or computer)

• On Windows (XP and Vista)
– Double click on KISS-2.exe

• KISS-C will be added to your program menu

• A KISS-C shortcut will be placed on your desktop

• On Linux (Ubuntu)
– If you are using LINUX -- you should know what to do (you may have

to download and install some packages)!

© 1993-2009 KIPR 40

Set KISS-C to use CBC Target

© 1993-2009 KIPR 41

KISS-C Interface Should Now Be Active

© 1993-2009 KIPR 42

Simple Programs

© 1993-2009 KIPR 43

A Simple C Program

int main()
{
 printf("This is a C program\n");
}

© 1993-2009 KIPR 44

Step by Step Process
• Use the File menu .. New, or click on the New shortcut button

(upper left corner)

• Type in the simple program for printing out a text string

(change the text to be printed if you wish)

– Hint: <Ctrl><Shift>= (or <Ctrl>+) enlarges the font

• Save the file using the the File menu .. Save, or click on the

Save button

– The file name prompted for can be whatever you want it to be (just

remember it) – the directory where you save becomes the default

directory for saving files

• Check your program by clicking on the Simulate button

– This automatically saves your program and runs it if there is no error

• If there is an error, you can use the Edit .. Goto Line menu

item to get to the problem

– the error will be on OR before that line

© 1993-2009 KIPR 45

Working Directory

• The default directory for saving files is where KISS-C will

save a previously unsaved file unless you change the

directory specification

– Files that have been previously saved will be updated by Save and

remain in their current directory

• The default directory for saving files is established by either

saving a previously unsaved file or by using Save As

• Similarly, the default directory for loading files is the

directory KISS-C most recently loaded from

• Your working directory is where you have files you are

currently working on

– You usually want this to also be the default for loading or saving

© 1993-2009 KIPR 46

Simulating your Program

• To simulate what your program does on the

CBC simply click the Simulate button

– Your program will launch a window on your

PC to show your program results

© 1993-2009 KIPR 47

Note: Depending on your operating

system, you may be able to change

the default properties for the display

window opened by KISS-C (i.e., to

have a white background and black

text). For Windows XP or Vista,

right click on the window title bar and

select Defaults; subsequent display

windows will use the new default

values. How and whether this can be

done varies among operating systems.

Observing Results

Observed result

© 1993-2009 KIPR 48

Returning to KISS-C

• You can resume your work in KISS-C even

while you have a program running

• You can’t simulate or download the

program again until the current run is done

(on Windows)

– You can work on another program

© 1993-2009 KIPR 49

The Program Explained
(it illustrates most C syntax)

© 1993-2009 KIPR 50

int main()
{
 printf("This is a C program\n");
}

Function Names

Every C program must have exactly one function named

‘main’. As a function, main returns a value, which by

convention is an integer, specified by starting its definition

with int. The return value from main is only of potential

use to the operating system, since when main has finished

your program is done. Some systems may give a warning

message if main does not contain a return 0;

© 1993-2009 KIPR 51

int main()

{
 printf("This is a C program\n");

}

Blocks of Code

The braces ‘{’ and ‘}’ act as a wrapper that

contains a code block

© 1993-2009 KIPR 52

int main()
{

 printf("This is a C program\n");
}

Function Calls

To call a function, just write its name and a set of

parentheses. If there are any arguments, put them in

the parentheses, separated by commas. Note that unlike

printf, main has no arguments, but you still have to

include the parentheses. printf is a function made

available to your program by KISS-C.

© 1993-2009 KIPR 53

int main()
{

 printf("This is a C program\n");
}

Terminating Statements

All C statements end with a ‘;’

Most statements are either a function

call (like this printf()) or an

assignment statement.

© 1993-2009 KIPR 54

Programming Process

© 1993-2009 KIPR 55

How to Program

• Think about and explicitly state goal

- Verbalizing the goal will help you to understand and refine it.

• Collect Requirements:

– Identify “specs” or specifications – those things that are to be done (independent

of solution method)

• Break large goals down into smaller sub-goals

– Break goals down to smaller parts until each part is easy to think about as a set of

program statements.

• Develop: Iterate and refine until done:

– create a small part of the overall program

– Be sure to document!

– test syntax

– test functionality/logic

– When it works add the next part

© 1993-2009 KIPR 56

Exercise #1a: Step by Step

• Goal: Create a program that prints your name on the screen.

• Start KISS-C, choose the CBC target, and click the New button

• Type in a program that prints your name and save it

• Check your program by clicking on the Simulate button

• If there is an error, KISS-C reports the line numbers where it is

encountering problems

– Usually, you need to address the first error before anything else

– You can use the Edit .. Goto Line drop down menu to get to the problem

– Note: the error occurs on OR before that line

• Once debugged, run your program by clicking the Simulate button

– Clicking on Simulate automatically saves the most recent version of your

program (even if there is an error in it)

© 1993-2009 KIPR 57

Debugging: Syntax & Logic

• C syntax is prescribed by a formal grammar that provides
the construction “rules” for C programs
– When you press the Simulate button, KISS-C checks to make sure

your program is legal

– If you have a syntax error, it gives an error message

– The line number of the error message indicates where KISS-C
realized something was wrong

– The actual typo is on that line or before

• C logic (or semantics) determine the interpretation of a
statement

• The program will do what you tell it to do, not necessarily
what you meant for it to do

• Fixing program syntax & semantics is the major part of the
exercise programmers call “debugging”

© 1993-2009 KIPR 58

Exercise #1b: Experiment a Little

• Try adding more printf() statements to your
program (pay close attention to the syntax,
particularly the terminating semi-colon needed by
each statement)

• Have your program print out a haiku about
robotics

• Run your revised program (Simulate button)

• Experiment by leaving off or adding extra “\n”
to the end of the strings in your printf()

© 1993-2009 KIPR 59

What's Being Simulated?

• The CBC target represents the
CBC robot controller

• Programs written for the
simulator will also work on the
CBC hardware

• Programs written that make use
of Create commands (coming up
soon), will be visualized on the
simulator, and will have similar
behavior when downloaded to a
CBC connected to a Create

CBC

Create

© 1993-2009 KIPR 60

Built-in CBC Functions

• The CBC target has lots of built-in functions -- special
capabilities, written by other people, that you can use in
your programs,

• printf is an example of such a function.

• sleep is another such function. sleep pauses your
program for however many seconds you give as an
argument, e.g.,
– sleep(5); pauses your program for five seconds.

• msleep does the same thing, but pausing for
milliseconds, e.g.,
– msleep(250); pauses your program for 250 milliseconds (or

1/4 of a second).

© 1993-2009 KIPR 61

Exercise #2

• Open your program from exercise #1 and save it
(use the File .. Save As menu item) in a file called
exercise2.c
– So you don’t overwrite your exercise1.c file!

• Add some additional print statements to your
program, but use sleep or msleep statements
in between the printf statements, e.g.;
printf("Hi ");

sleep(3);

printf("there.");

• Click on the Simulate button to see how your
program behaves

© 1993-2009 KIPR 62

More Built-In Functions

• kissSim_init: opens up a graphical simulator of the

CBC and the Create robot base. This function takes 4

arguments -- a simulated world and the X, Y and of the

initial position of the robot in the simulated world, e.g.;

 kissSim_init(BB09WORLD,151,32,1.5708);

– A (radian measure) value of 0 has the robot pointing east, /2 south

– Important: you need to close out the graphical simulator before

resuming your work in KISS-C

• Otherwise your program, seemingly mysteriously, won’t compile!

• kissSimPause: this pauses the simulation until the user hits

the space bar, e.g.;

 kissSimPause();

© 1993-2009 KIPR 63

More Built-In Functions (2)

• create_connect: connects the CBC to the Create
robot base, e.g.;
 create_connect();

• create_drive_straight: causes the Create to move
at a given velocity (measured in mm per second), e.g.;
 create_drive_straight(200);

• The speed range is -500 to +500

• create_stop: causes the Create to stop moving, e.g.;
 create_stop();

• create_disconnect: disconnects the CBC from the
Create robot base, e.g.;
 create_disconnect();

• create_sensor_update: updates the Create's sensor
values and makes them available to the CBC, e.g.;
 create_sensor_update();

© 1993-2009 KIPR 64

Exercise #3

• Open up a new file in KISS-C, save it as exercise3.c

• Write a program that:

1. starts up the graphics simulator window,
• Hint: use kissSim_init(BB09WORLD,151,32,1.5708);

2. connects to the Create,

3. drives straight at 200mm/second,

4. sleeps for 10 seconds,

5. stops the Create,

6. disconnects from the Create, and

7. pauses the simulator

• Click on the simulate button to see how your program behaves.

– Read the on-screen instructions when the graphics window comes up.

– You may have to click on the graphics window before it will listen to

your keyboard

© 1993-2009 KIPR 65

Exercise #3: Example (1)

int main()

{

 kissSim_init(BB09WORLD,151,32,1.5708);

 create_connect();

 create_drive_straight(200);

 sleep(10);

 create_stop();

 create_disconnect();

 kissSimPause();

}

This line of the code creates the simulator window, and brings up this help

screen. Select the kissSim: BB09 Game World window by clicking on

it, and then press the space bar to get to the next screen.

kissSim_init(BB09WORLD,151,32,1.5708);

© 1993-2009 KIPR 66

Exercise #3: Example (2)

int main()

{

 kissSim_init(BB09WORLD,151,32,1.5708);

 create_connect();

 create_drive_straight(200);

 sleep(10);

 create_stop();

 create_disconnect();

 kissSimPause();

}

Your program has not yet advanced, but now you can see the world. Note that the

gray background indicates that your program is paused. The simulator always starts

with your program paused. Press the space bar to start your program running.

kissSim_init(BB09WORLD,151,32,1.5708);

© 1993-2009 KIPR 67

Exercise #3: Example (3)

int main()

{

 kissSim_init(BB09WORLD,151,32,1.5708);

 create_connect();

 create_drive_straight(200);

 sleep(10);

 create_stop();

 create_disconnect();

 kissSimPause();

}

Your program has started. The PWR light turns yellow indicating that the Create is

connected to the CBC and in Safe mode (orange indicates that it is in Full mode).

The ADV light turns green (default setting when the Create is turned on). Within a

millisecond, your program has reached the sleep statement. The

robot continues moving forward until the 10 seconds are up.

create_drive_straight(200);

© 1993-2009 KIPR 68

Exercise #3: Example (4)

int main()

{

 kissSim_init(BB09WORLD,151,32,1.5708);

 create_connect();

 create_drive_straight(200);

 sleep(10);

 create_stop();

 create_disconnect();

 kissSimPause();

}

The PWR light turns green indicating that the Create is disconnected from the CBC.

The bottom wall has turned red indicating that the robot has collided with the wall (note

that the robot has gone part way through). The background has turned gray because

your program is paused. Hit the space bar to unpause (which will exit the

program and close the graphics window).

create_disconnect();

© 1993-2009 KIPR 69

CBC Simulator: Create Sensors
• Two simulated touch sensors

correspond to the left and right

front bumper on the Create module

– gc_lbump and gc_rbump
get the current sensor values

for the bumpers when
create_sensor_update()

is called

• If the simulator detects the robot

running into an obstacle

(graphically, a blue line), the

appropriate sensor becomes

pressed and the obstacle changes

color

– Clicking on the L or R key

will activate/deactivate the

bumpers

• Note that in the simulation the

robot will go right through the wall

unless your program tells it to do

something else!

© 1993-2009 KIPR 70

CBC Simulator: Sensors & Motors
• The simulator also provides

controls to set simulated values for

digital and analog sensors

– Digital sensors are

activated/deactivated by

pressing a number key,

buttons by an arrow, letter, or

period (for CBC black button)

– Analog sensors are changed

by using your mouse (click

and hold) to drag a thin red

settings bar right or left

• If Create motor commands are

used, the simulator moves the

simulated robot in a manner

corresponding to the commands

• For non-Create motors, current

motor values set by your program

are displayed

© 1993-2009 KIPR 71

Documentation: Comments
• Explanatory comments

– Can (and should) be added to a program to assist you and your teammates in understanding
it later

– Do not affect the size or performance of the compiled program

• Syntax
– In-line form: // comment text

• The comment ends when a new line is started

– Multi-line form: /* comment text */
• The comment starts with an initial “/*” and continues until “*/” is encountered

• Using comments to document program changes
– Particularly useful for

• A large evolving program

• Programs being modified by more than one person

// simple.c – (c) 2009 David Miller, KIPR
// This program displays a simple character string
/* History:
 Modified 01/7/09 – adjusted comments– dpm
*/

int main() {
 printf("This is a C function\n"); // display the string
}

© 1993-2009 KIPR 72

Style: Indentation
• C ignores most white space (spaces, returns, tabs, blank

lines)

• Indenting C program text helps to bring out the structure of

your program – this is an aspect of programming style for

improving readability

– Uniformly indent program text within each program block

• Start a new indentation after each ‘{‘

• Shift indentation back to left after each ‘}’

– Indent the second line of a single statement (exception: any added

white space inside a quoted string will print!)

• KISS-C’s built in editor can do most indentation for you!

– The KISS-C Edit menu provides commands for indenting your text

© 1993-2009 KIPR 73

Exercise #4
• After finishing exercise #3, use Save as to save the file as

exercise4.c and modify the program so it looks like this:
int main()
{
 kissSim_init(BB09WORLD,151,32,1.5708);
 create_connect();
 gc_distance = 0;// add this line
 create_drive_straight(200);
 sleep(10);
 create_stop();
 create_sensor_update(); // add this line
 printf("Robot traveled %dmm\n",gc_distance); // add this line
 create_disconnect();
 kissSimPause();
}

• Click on simulate and observe the behavior. When the

simulator pauses at the end, look at the text window.

© 1993-2009 KIPR 74

gc_distance

• The lines that were added in Exercise #4
manipulate gc_distance.

• gc_distance is a variable, which holds an
integer value that corresponds to how far, in mm,
the robot has traveled.

• Variables are a standard feature of almost all
programs.

• gc_distance is built into the CBC target
environment, but you can create variables of your
own to hold numbers that your program will work
with.

© 1993-2009 KIPR 75

Variables and Data

© 1993-2009 KIPR 76

Variables

• Variables are boxes where data can be stored and
retrieved.

• A variable’s name can be anything you want, as
long as the name starts with a letter and contains
only letters, digits and the under score character _.

• A variable’s name should be something that
relates to how it will be used.

• When a variable is first created (declared), the
type of data that it will hold needs to be specified.

© 1993-2009 KIPR 77

Numeric Data in C
• There are two types of numbers commonly used in C

– Integer

• a 32 bit binary number in the range -2,147,483,648 to +2,147,483,647

– On some systems 64 bit integers may also be supported

– Floating point numbers (fractions)

• a 32 bit or 64-bit representation in “scientific notation” for numbers such as

3.141659

• The number of bits used determines the precision of the representation for non-

determining decimals such as

• If mixed data types are used in a computation, C converts arguments to

the most complex type for the computation

– There are built-in means to force how a type conversion is done

• Integer arithmetic is handled by hardware circuits, so it is fast

• Floating point arithmetic is more complex and absent floating point

hardware is handled by software, making it slower than integer

arithmetic (although not slow in comparison to humans!)

© 1993-2009 KIPR 78

C Variables & Data Types
• Variables retain data for later use

– Variables are employed in constructions such as arithmetic expressions

• Each variable represents a location in computer memory, so its type must

be specified for C to know how it is to be interpreted

• Syntax: <data-type> <variable-name> ;

• Numeric data types

– int numOfWheels;
• specifies numOfWheels to be an integer variable

• 32 bit memory location

• Range -2,147,483,648 to +2,147,483,647

– float radius;
• specifies radius to be a floating point variable

• 32 bit memory location to be interpreted as representing a number in “scientific

notation” (exponent & mantissa format)

• There are also non-numeric data types (see documentation)

© 1993-2009 KIPR 79

Integer Arithmetic (int)
• + is used for addition

X + Y means X plus Y

• - is used for subtraction
X - Y means X minus Y

• * is used for multiplication
X * Y means X times Y

• / is used for division
X / Y means X divided by Y with the decimal truncated

• % is used for modulus (when the arguments are
positive, this is just the remainder)

X % Y means the remainder when X is divided by Y
(assuming that X and Y are positive)

© 1993-2009 KIPR 80

Floating Point Arithmetic

• The result of an operation on floating point numbers is a
value of type float

• Any integers used must have a decimal point so that they are

of type float (e.g., 3.0 instead of 3)

– The +, -, * operations work as before except that the result is a

float (retains a decimal fraction, even if it is 0)

– With floating point arguments the / operation retains the decimal

fraction rather than truncating it

• % (remainder operator) is not defined for floating point

numbers

© 1993-2009 KIPR 81

Using Variables

• Variables only exist inside the block of code (defined by the {}) in which the

variable's declaration statement exists.

• To aid in program readability, declare all of your variables for your function at
the beginning of the function (in the line(s) immediately after the opening {).

• The value of a variable is undefined until some value has been specifically

assigned to it.

• It is a good idea to initialize your variables after you have defined them, e.g.;

 int myVariable;

 float myOtherVariable, anotherVariable;

 myVariable = 0;

 myOtherVariable = 2.5;

 anotherVariable = 3.0;

• In C, you can combine the declaration and initialization statements; e.g.,

 float myOtherVariable=2.5, anotherVariable=3.0;

© 1993-2009 KIPR 82

Displaying Variable Values
using printf();

• The values of variables used within a program can be displayed
using the C library function printf

• Syntax: printf(<text-string>, <arg1>, <arg2>, . . .);

• For each argument, a corresponding “% code” is embedded as a
“placeholder” within the <text-string>, to be replaced by the
value of the argument when the printf is executed
– Example:

printf("volts=%f R=%d\n", voltage, resistance);

– %d is used to correspond to an integer argument (int)

– %f is for a floating point argument (float)

– \n positions you at the start of the next line in the display window

– Documentation has a more complete description of printf()

© 1993-2009 KIPR 83

Getting Data into Variables

(recap)
• A data value can be assigned to a variable when it is declared

int j=10; //integer variable j, initialized to 10
float pi=3.1416; /*floating point variable, initial value

 approximately */

• A data value can be assigned to a variable as part of program execution
int i,j=10; //integer variables i and j, j initialized to 10
i = 2; //assign (or store) the value 2 in i

• Variables can be used in expressions and assigned new values
– Continuing the previous example

int i,j=10; //integer variables i and j, j initialized to 10
 i = 2; //assign (or store) the value 2 in i

i = i + j; //compute i+j and store the new value in i
– What is the value of i now?

© 1993-2009 KIPR 84

Exercise #5
• Use Save As to save Exercise #4 in a file called exercise5.c

• Right after the { in your main function, declare an int variable

named cmDist and a float variable named inchDist.

• Right after the printf statement, add a couple statements that

fill these variables with the correct values, e.g.,

inchDist=gc_distance/25.4; //convert dist in mm to inches

• Write a similar statement to convert mm to cm (divide the value

in mm by 10)

• Add a print statement that prints out the distance in cm and

inches, so that if your robot had moved 1817mm it would print

out: Robot traveled 181cm or 71.5354inches.

• Remember to use %d to print out an int variable or value and

%f for float variable or value.

© 1993-2009 KIPR 85

Program Flow/Repetition

© 1993-2009 KIPR 86

Program Flow

• When a program is run, the control moves
from one statement to the next

• Calculate j2 + 1 when j = 3
int main()
{
 int r,j; // declare r and j

 j = 3; // assign a value to j
 r = j*j + 1; // calculate and assign
 printf("result is %d\n",r);
}

© 1993-2009 KIPR 87

Program Flow (2)

• C offers other program flows than doing one step after another

• Sometimes you want your program to do something more than once:

– do a task until a condition is true (move until robot has traveled 2

meters)

– wait until some condition is true (don't start moving until a button

is pushed)

– repeat a step a specific number of times (wave arm 3 times)

• Example: Instead of having the robot travel for 10 seconds, let's have it

travel until it has traveled 90cm (900mm). This distance would put it

about halfway between the top and bottom blue lines.

• To do this, we want to check the value of gc_distance over and

over again until it is greater or equal to 900, and then stop the robot

• A while loop is a control structure for repeating a series of statements

while a condition is true

© 1993-2009 KIPR 88

The while Statement

• Syntax: while (<test>) {<statements>}

– The test is something that is either true or false

– While the test is true, the block of statements are

repeated

– Each time the last statement in statements is completed,

the test is checked

• if the test is still true, the block of statements is repeated

• if the test is false, the program skips past that block of

statements and continues on

– A true/false test is called a Boolean Expression

© 1993-2009 KIPR 89

Boolean Expressions

• Boolean expressions result in either
0 (false) or 1 (true)

 [technically, C treats any non-zero value as true]

• Boolean operators:
== (two equals signs together, not one)

<, <=, >, >= (the usual comparators)

!= (not equal)

|| (or), && (and)

! not

• The while statement uses boolean expressions:
while (<boolean expression>)

© 1993-2009 KIPR 90

Using Repetition to Check for Change

• The while statement is commonly used in
robotics to wait for an event. e.g:

 //wait till A is pressed

 while(a_button()==0){msleep(10);}

or
 //drive until left or right bumper is pressed

 //check bumpers then update sensors and repeat

 create_drive_straight(50);

 create_sensor_update();

 while(!(gc_lbump || gc_rbump)) {

 msleep(50); //let Create catch its breath

 create_sensor_update();

 }

 create_stop();

© 1993-2009 KIPR 91

Some Things That Change

on a Botball Robot

• Variables holding

Create sensor values

– gc_lbump

– gc_rbump

– gc_distance

– gc_total_angle

– gc_advance_button

– gc_play_button

• Button functions for

the CBC

– a_button()

– b_button()

– left_button()

– right_button()

– up_button()

– down_button()

– black_button()

© 1993-2009 KIPR 92

CBC Sensor Functions
• digital(<port>)

– <port> is an int value corresponding to the location where the sensor is plugged in (0-7)

– the function returns an int 1 or 0 (true or false) depending on the state of the sensor

• analog10(<port>)

– <port> is an int value corresponding to the location where the sensor is plugged in (8-15)

– the function returns an int value of 0-1023, depending on the state of the sensor

– ports 13-15 are reserved for the range sensors (the ET and sonar sensors) which use a floating

signal line

• accel_x()

– returns an int value between -2047 to 2047 representing acceleration along the X axis (uses

the CBC internal accelerometer)

– a value of 1365 is approximately 1 G (9.8 m/sec2
 - force of gravity)

– negative values indicate acceleration in the negative direction

• accel_y()

– same as accel_x, but in the Y axis

• accel_z()

– same as accel_x, but in the Z axis

© 1993-2009 KIPR 93

• Syntax: while (<test>) {<statements>}
• Move 90cm

int main()

{

kissSim_init(BB09WORLD,151,32,1.5708);

create_connect();

create_drive_straight(200);

create_sensor_update();// get Create’s current values

gc_distance = 0; // reset gc_distance

while(gc_distance < 900){// loop while this true

 msleep(50);// wait 1/20 sec between updates

 create_sensor_update();// update gc_distance

}

create_stop();

printf("Robot traveled %dmm\n",gc_distance);

create_disconnect();

kissSimPause();

}

Example: Using Repetition

© 1993-2009 KIPR 94

• Syntax if (<test>) {statements}

• < test > is a boolean expression for testing whether or not
a test criteria is met

• The statements are skipped if the test is false. e.g.:
int main()
{

 kissSim_init(BB09WORLD,151,32,1.5708);

 create_connect();

 if(digital(5)==1) //is digital 5 on?
 {
 printf("digital 5 is on\n");//if true, print
 }

 create_disconnect();

 printf("The program is done\n");
 kissSimPause();
}

Conditional Execution
Making a Decision with if

Example using if

• Run the program

• After help screen, press the 5 key to toggle digital 5 on and off

• Press space to execute program, and then space again to exit

The test is false

so the printf is

skipped

The test is true

so the printf is

executed

© 1993-2009 KIPR 96

• Syntax if (<test>) {statements} else {statements}

• If test is true do first block of statements, if it is false do
the second block of statements. e.g.:
int main()
{

 kissSim_init(BB09WORLD,151,32,1.5708);

 create_connect();

 if(digital(5)==1) //is digital 5 on?
 {
 printf("digital 5 is on\n");//if true, print
 }

 else //do this block when digital 5 is off
 {
 printf("digital 5 is off!\n");//if false, print
 }

 create_disconnect();
 printf("The program is done\n");

 kissSimPause();
}

Conditional Execution
Making a Decision with if else

The test is false

so the else printf

is executed

Example using if else

The test is true

so the if printf is

executed

• Run the program

• After help screen, press the 5 key to toggle digital 5 on and off

• Press space to execute program, and then space again to exit

© 1993-2009 KIPR 98

int main()

{

 kissSim_init(BB09WORLD,151,32,1.5708);

 create_connect();

 create_drive_straight(200);

 create_sensor_update(); //update values for bumpers before testing

 while(gc_lbump==0 && gc_rbump==0){//loop while not bumped

 msleep(50);//wait 1/20 sec between updates

 create_sensor_update();// update gc_distance

 if(digital(5)==1){create_play_led(1);}//if true, turn on LED

 else{create_play_led(0);}//turn off LED when digital 5 is off

 if(accel_z()<0) break;//if robot is upside down, exit loop

 } //end while

 create_stop(); //a bumper was pressed or robot flipped so stop

 printf("Robot traveled %dmm\n",gc_distance);

 create_disconnect();

 kissSimPause();

}

Example: if else

© 1993-2009 KIPR 99

KISS-C Create Movement Functions

• To see all the KISS-C Create movement functions see the KISS-C help

manual for the CBC target

• Here are major ones (some of which we’ve already used)

– Speed in mm/sec, radii in mm

– create_drive(int speed, int radius)

• Drive the robot along a curve with given radius; positive radius

turns left, negative right

• Example: create_drive(300, -650);

– create_drive_straight(int speed)

– create_spin_CCW(int speed)

– create_spin_CW(int speed)

– create_drive_direct(int r_speed, int l_speed)

• Right motor speed and left motor speed

– create_stop()

© 1993-2009 KIPR 100

Exercise #6

• Open a new file (press the New button on KISS-C window) and
save it as exercise6.c

• Write a program for the robot that goes straight until it runs into
something; if the left bumper is pressed the robot should turn
clockwise for 2 seconds at speed 200, if the right bumper is
pressed the robot should turn CCW for 2 seconds at speed 350.

• The robot should stop and your program exit if the digital port 0
ever has a value of 1.

• Hints:
– Test digital port 0 for your while loop

– Inside your loop, have two if statements, one of which is executed if
gc_lbump==1 and the other if gc_rbump==1

– If the right bumper is pressed your if statement should:
{create_spin_CCW(350); sleep(2);}

© 1993-2009 KIPR 101

#include "my_lib.c"
int main() {
 int i=0;
 kissSim_init(BB09WORLD,151,32,1.5708); // initialize w/world
 create_connect(); // communicate with Create if present
 while(i<4) // do a square
 {
 printf("Moving Forward\n");
 my_move(600, 250);
 printf("Turn Left\n");
 my_turn(90, 100);
 i = i+1;
 }
 create_disconnect(); // stop communication with Create
 kissSimPause(); // end of simulation
}

Where We’re Headed
Example KISS-C Program for Robot Control

• Idea: use similar logic to what we did for moving /turning a Create

to construct functions and save them in our own function library and

use them like any built-in function (a labor saving device!)

Go 600 mm at 250 mm/sec and turn 90º

Do 4 times to trace a square

© 1993-2009 KIPR 102

Functions in General

© 1993-2009 KIPR 103

About Functions

• Remember your math functions?

– A typical function

• Area of a circle is a function of the radius

– The “area function” for a circle is the Greek circle constant times

the radius r squared, or A(r) = r2

– In general we use the notation f(x) to represent a function

where f is the name of the function and x is its argument

• Functions can have more than one argument, e.g., f(x,y)

– Functions are “deterministic”, meaning that if you supply

values for the arguments, the function produces a unique

result

• A(50) = 2500 which is approximately 7853.981634

© 1993-2009 KIPR 104

Functions in C
• A C program is comprised of 1 or more C functions, one and only one

of which must be named main

• C functions follow the same rules as math functions, except a C

function can return nothing (is void) and it doesn’t have to have any

arguments

• Since variables in C have differing types, you have to specify the data

type for each of your function’s arguments, and the type of data

returned by the function

– For the area function this would appear in the form:

 function name argument name

float circ_area(float r)

 data type returned data type for the argument

– This is called the function’s prototype, since it clues you as to how

to use the function

– You may have noticed that the documentation for each

library function provides the function’s prototype

© 1993-2009 KIPR 105

Writing Your Own C Functions
• The general function syntax in C is

<type> fn-name (<type> arg1, <type> arg2, …)

{<function-body> }

• The area function requires an argument and returns the area of a circle that has

the radius given by the argument

float circ_area(float r) {

 float pi = 3.14; // approx value of pi

 return(pi * r * r);

}

• Create a new file, copy the circ_area function into KISS-C, and save as

“area_test.c”

• Test your function

– Add a main function to “area_test.c”

int main()

 {printf("area = %f\n",circ_area(50.0));}

Note the effect approximating has on the result!

(compare your answer to the better approximation of 7853.981634)

© 1993-2009 KIPR 106

About #include
• #include is used to instruct KISS-C to add the contents of

some other file (a “library”) to your program when you

compile it

• KISS-C automatically includes most C and Botball libraries

having functions you are likely to need (such as printf and

msleep)

• If the file name is enclosed in quotes, KISS-C will look for

the file in your default input directory (normally your working

directory)

– Or you can specify the file path for KISS-C to use

– If “pointy” brackets (<>) enclose the file name, KISS-C will look for

the file in the system directory

© 1993-2009 KIPR 107

Setting Up a Function Library

• We want a function to move the Create a given distance, so

we should name it; e.g., “my_move”, and use an argument

for how far in mm to move and second argument for what

speed

– This is a function “spec”

• Since we want our move function and a turn function in the

same library, we should use a representative file name

– Click on New in KISS-C to start a new file

– Save as my_lib.c

• This is a library, main should not be defined in this file!
– Other programs may also need these functions

• The library can have as many functions defined in it as you

wish

© 1993-2009 KIPR 108

Move Function: A First Version

void my_move(int x, int vel) { // move x mm, vel in mm/sec

 create_sensor_update(); // update Create sensor readings

 gc_distance=0; // and initialize distance variable

 create_drive_straight(vel);

 while(gc_distance < x)

 {

 create_sensor_update();

 msleep(50); // pause between sensor updates

 }

 create_stop(); // stop

}

• Comments: What if you try to use this function to move backwards?

(negative velocity)

– An opportunity to write a more general version!

© 1993-2009 KIPR 109

Exercise #7: Turning

• We know we can get the Create to turn in place by using
create_spin_CCW

• The variable gc_total_angle keeps track of how many

degrees the Create has turned through since it was initialized

– We can use it in a manner analogous to gc_distance!

• So, we want a function to turn the Create a given number of

degrees, so we should name it “my_turn” and use as an

argument for how far in degrees to turn and a second

argument for what speed

• It should be added to your library file with the my_move

function

• Test your library with the program on the next slide

© 1993-2009 KIPR 110

#include "my_lib.c"
int main() {
 int i=0;
 kissSim_init(BB09WORLD,151,32,1.5708); // initialize w/world
 create_connect(); // communicate with Create if present
 while(i<4) // do a square
 {
 printf("Moving Forward\n");
 my_move(600, 250);
 printf("Turn Left\n");
 my_turn(90, 100);
 i = i+1;
 }
 create_disconnect(); // stop communication with Create
 kissSimPause(); // end of simulation
}

A Program That Uses the Library

Add in your library functions

Use your move function!

Use in your turn function!

© 1993-2009 KIPR 111

So Why Use Libraries?
(after all you could just put all of the code in the same file)

• Try this scenario: Each of Mary, John, and Sue are writing

functions for move and turn, so they put them in libraries:

“Mary.c”, “John.c”, and “Sue.c”

• So long as Mary, John, and Sue follow the naming

conventions for move and turn (“my_move” and

“my_turn”), you can use their work with the program you

just finished simply by changing in turn

 #include "my_lib.c" to #include "Mary.c"

to #include "John.c"

to #include "Sue.c"

and running the program for each

© 1993-2009 KIPR 112

Exercise #8

DemoBot Build

Instructions are on your

workshop flash drive

© 1993-2009 KIPR 113

END OF DAY 1

© 1993-2009 KIPR 114

Day 2

© 1993-2009 KIPR 115

Tutorial Schedule:
• Day 1:

– Robots, Botball and design
projects

– Botball related activities

– KISS-C programming

– Your first programs
• kissSim simulator

• CBC and Create

• Simulated robot

– Variables and data in C

– Program flow/repetition

– Create movement functions

– C functions in general
• Building your own library

• Move and turn

– Demobot Build

• Day 2:
– Game Review

• Robot Documentation

• Building Rules

• Game Challenge

– Using tournament software

– About the CBC

– CBC Color Vision

– Sensors, Create, Motors

– Using Demobot

– Motor functions and robot
programming

– Project design

– Checkout and wrap up

© 1993-2009 KIPR 116

Game Session

• Instructor will reveal password at the end of

the game presentation

© 1993-2009 KIPR 117

Utilities for Botball
 wait_for_light

• In Botball robots start when signaled by a starting light and have to stop

120 seconds later

• The function wait_for_light(<port>) for the CBC runs a

calibration function for the light sensor you have plugged into <port>

– Calibration determines what sensor reading corresponds to the light being on

and what corresponds to it being off

– On-screen prompts on the CBC guide you through the calibration process

– A successful calibration means your sensor is (1) in the port you specified, is

(2) shielded well enough, and (3) is aimed at the light sufficient for the

sensor to determine whether or not the light is on

• If calibration is successful your program will be paused until the game controller

activates the starting light

• If unsuccessful, you will be given another shot at calibration (fix your shields!)

• Using wait_for_light for your tournament program is highly

advised!

© 1993-2009 KIPR 118

Utilities for Botball
 shut_down_in

• When executed, the function

 shut_down_in(<game_secs>);

will stop motors, freeze servos, and send a create_stop command

(in case a Create is being used). Use of this program is optional, and

you can devise your own version if you wish, but it is at your own risk.

– If you do devise your own version, TEST multiple times before the

tournament

• If you are using the Create and your CBC loses its serial connection to

the Create (probably the result of an error in your program code), your
Create won’t receive the create_stop (and so won’t stop in time,

in which case you will lose the round!)

Note: Normally a float number (with a decimal point) is used for

game_secs

© 1993-2009 KIPR 119

Game Program Template

#include "my_lib.c" – add an include for each library your program needs –

int main() {

 – specify any local variables your programs uses here –

 – then start the robot simulation (with your own values) if you want to use it –

 kissSim_init(BB09WORLD,151,32,1.5708);
 create_connect(); – if using Create –

 – and put in the following two lines –

 wait_for_light(11); – port between 8 and 12 –

 shut_down_in(119.5); – choose your own number of seconds –

 – put your main program statements here –

}

© 1993-2009 KIPR 120

Exercise #9: Game Program
• Convert the program you wrote for drawing a rectangle to

work as a game program

– Use the template

• Simulate your program

– When calibrating, Left is the left arrow key and Right is

the right arrow key

– For the simulator, use the analog slider for port 11 to

first set the light on (low) value and then to set the light

off (high) value

• If these are sufficiently different, you have good calibration!

• Simulate the start light turning on by sliding port 11 to low

• Experiment – see what happens if calibration isn’t

successful

© 1993-2009 KIPR 121

The CBC

© 1993-2009 KIPR 122

CBC and Cables
Power adapter

CB/PC USB cable

Create/CBC cable

CBC

© 1993-2009 KIPR 123

CBC (front ports)

Black button
black_button()

Boot/off button

(boots the CBC

or shuts it down)

Motor ports 0 & 1
motor(<m>,<vel>)
mav(<m>,<vel>)
mrp(<m>,<vel>,<target>)

Digital ports 0-8
digital(<port>)

Motor ports 2 & 3

Servo ports 1 & 2 Analog ports 8-12

Floating analog 13-15
analog10(<port>)

Servo ports 3 & 4
enable_servos()
disable_servos()
set_servo_position(<s>,<pos>)

© 1993-2009 KIPR 124

CBC (rear ports)

Power lock dongle,

insert in serial port for

charging and transport

USB connector for cable

to your PC (used for

downloading your programs)

TTL level serial connector for

communications with Create

robot base

USB ports for camera and

future peripherals Charge port: use center positive,

13.5v DC at 1 amp charger

© 1993-2009 KIPR 125

CBC Main Power
Insert power lock dongle in serial port to

fully power down system for long term

storage and transport

Use paper clip or Botball screwdriver

to press recessed main power on button

© 1993-2009 KIPR 126

The CBC Update Process

© 1993-2009 KIPR 127

CBC Updates

• The CBC is a brand new system, that first became
operational in January 2009

• New capabilities are being added to the CBC on a
regular basis

• In order to be able to use these new capabilities,
you need to update the onboard software

• This process involves placing a file called
userhook0 on a flash drive, and inserting it into
the CBC

© 1993-2009 KIPR 128

Updating Firmware (1)

• The firmware on your CBC may need to be updated

– This is analogous to upgrading the ROM BIOS on a PC or upgrading

firmware on a MAC, which as you may know is a process that should be

not be interrupted once started

– You must insure there is adequate power for the process to complete, so

you are strongly urged to plug in your CBC power supply before

proceeding with an update

• The process takes about 5 minutes, so this a very serious consideration!

– DO NOT INTERRUPT FIRMWARE UPDATE ONCE IT HAS

BEEN STARTED

• Continue to the next slide for the process

• Once the process has been started, do not (un)plug the power supply (do not

plug in the power supply once the process has started -- better to hope that the

battery will last).

© 1993-2009 KIPR 129

Updating Firmware (2)
• ONCE THE FIRMWARE UPDATE IS STARTED DON'T INTERRUPT IT!!

• Plug the power adapter into your CBC

• Boot the CBC (push the recessed button for power on, if necessary, then

press the (red) boot/off button twice to start boot)

• You should see this screen immediately

while the CBC checks for its boot software;

plug in the flash drive at this point.

• Then you should see this screen to indicate

the CBC is booting (if you get colored circles,

press reset and try again)

• Try to plug the flash drive with the firmware

update into a CBC USB port before this screen

first appears

© 1993-2009 KIPR 130

Updating Firmware (3)

• Warning: If the firmware is in the root directory of a flash memory

plugged into the CBC, the boot software will probably find it when you

boot the CBC and so will start the update process

• Know what is on flash drive!!

• If the firmware upgrade fails, put a fresh copy onto the root of your flash

drive and try it once more, then ask for help

– ONCE THE FIRMWARE UPDATE IS STARTED IT CAN’T BE

INTERRUPTED!!

– You will see the screen on the following slide at first and then the system

will start showing its progress

© 1993-2009 KIPR 131

Updating Firmware (4)
When firmware update begins this screen briefly appears, and is then

followed by update progress information such as given on the next slide

ONCE THE FIRMWARE UPDATE IS STARTED IT CAN’T BE INTERRUPTED!!

© 1993-2009 KIPR 132

Updating Firmware (5)
While firmware update is in progress, you will see information like

this on the screen

ONCE THE FIRMWARE UPDATE IS STARTED IT DO NOT INTERRUPT IT!!

© 1993-2009 KIPR 133

Updating Firmware (5)
• ONLY when you reach the following screen is firmware update over!!

• Now REMOVE THE FLASH DRIVE, press the boot/off

button once to turn off the CBC

© 1993-2009 KIPR 134

CBC User Interface

• Programs, Vision, and Sensors

– Programs

• At present, to run a program, copy the file with main() in it to your USB

flash drive and rename the file robot.c

• Copy any of your libraries the program uses to your flash drive

• Make sure the CBC is already booted, and then insert the flash drive into the

CBC

• Press “Programs” to load your program and bring up the screen to “Compile”

and “Run” it

– The Console screen come up automatically when running a program, and can also

be used to rerun programs already compiled

– The camera configuration screen will come up when you press “Vision”

• You will need to install your Botball camera in one of the CBC’s USB ports

– The sensor test screen will come up when you press “Sensors”

• We will be using this later

• The remaining buttons are not working at this time

© 1993-2009 KIPR 135

The Console Screen

• This screen is used when running
user programs

• The a, b, up, down, left and right
buttons are also on this screen
– User code can get the status of these

buttons by calling a_button(),
up_button(), etc

• You can switch among screens
while your program is running, to
monitor sensor values, motor
positions, or the vision system

© 1993-2009 KIPR 136

Booting the CBC
• The CBC is fully off if the power lock dongle

is plugged into its serial port

• To power on the CBC pull the dongle loose

and use a small tool to press the recessed

power button on the side of the CBC, then

press the (red) boot/off twice (turning the

screen off then back on).

– During boot be sure you don’t mess with any

motors you have plugged in (could mess up port

calibration)

• If boot is successful you will see a message

indicating “Boot complete”

and that the CBC User Interface is starting

• To power down, use the touch screen power

button. In an emergency (run away robot, or

system crash) the red physical button (used to

boot the system) may be used to power down

-- however, the next boot may take twice as

long then if the soft power button had been

used.

© 1993-2009 KIPR 137

CBC Power Management (1)

• When not running the robot, leave the CBC plugged in

– The batteries have several mechanisms to prevent overcharging, so it is

safe to leave the CBC on charge overnight

– The CBC does not need to be shut down, if it is on the Charger (the

processor and display can run 24/7 without damage)

– Keep the CBC on the charger when you can; if the charge light goes out

before batteries are fully charged, unplug the charger, give it a short rest,

and plug it back in

• If the batteries are fully charged, the light will go back out again

quickly

• The CBC is best stored with the power lock dongle plugged in

– Plugging in the dongle completely turns off power to the CBC

– At the end of the Botball season or when shipping the CBC, reinsert the

dongle

© 1993-2009 KIPR 138

CBC Power Management (2)

• If you plug the power lock dongle while the charge light is

blinking, it will continue to blink after the charger stops

charging, and even if the charger is unplugged!

• This will not result in anything bad and the light will turn off

the next time you turn on the CBC

• The CBC can be plugged in to the power adapter or to the

Create to for charging, BUT servos and motors will behave

differently when the CBC is plugged into a charger (to the

wall or Create) then it will when running off batteries.

• Best not to turn on motors or servos when the CBC is

plugged into a charger

© 1993-2009 KIPR 139

Running Programs on the CBC

• The CBC can be connected to your PC

using the included USB cable

– The flat end (A) of the USB cable goes into

your PC

– The squarish end (B) plugs into the CBC

USB (B) connector for cable

to your PC (used for

downloading your programs)

© 1993-2009 KIPR 140

Running Programs on the CBC

(2)

• Compile and simulate your program in

KISS-C to make sure it is bug free

© 1993-2009 KIPR 141

Running Programs on the CBC

(3)
• Connect the CBC to

your PC using the
USB cable

• Set the USB port using
the Settings menu
– If you are not sure

which port is the
correct one:

• disconnect the CBC,
press refresh,

• connect the CBC and
press refresh

– The port for the CBC is
the one that appears

© 1993-2009 KIPR 142

Running Programs on the CBC

(4)
• Press the "Download"

button on KISS-C
– The status message on the

lower left corner of KISS-C
will switch to
"Downloading…"

– When the download is
complete, the status message
will switch to "Download
Succeeded"

– The CBC will automatically
switch to the programs menu
and then compile your
program on the CBC

© 1993-2009 KIPR 143

Running Programs on the CBC

(5)
• The screen on the CBC will indicate a

successful compilation

– At this point you can press the "Run"
button on the CBC to execute your
program

• Alternatively, you can copy your program
onto a USB flash drive and rename it
"robot.c". This program can be loaded by
placing the flash drive into the CBC and
pressing the compile button in the
Programs window of the CBC

• Note: If your program #includes any
other files, they must be in the same
directory as the file you downloaded from
KISS-C

© 1993-2009 KIPR 144

Exercise #9b: Game Program
• Take your haiku program from Day 1 (or any other

program that prints things out, but does not use the Create)

and download it to the CBC

• You can add in the Botball utilities to your program and

use a light sensor to test those out as well.

© 1993-2009 KIPR 145

Color Vision System

© 1993-2009 KIPR 146

Color Vision System

• Color Space

• Finding color blobs in an image

• Trying out the vision system

• Making a color model

– On screen instructions

– Camera check with test program

• Tuning the camera

© 1993-2009 KIPR 147

HSV Color Selection Plane

Hue=0

Hue=360

Sat=0

Val=224
Sat=224

Val=224

Sat=224

Val=0

Note: 224 is the

range of values

the camera

pixels put out

in each of R, G

& B

© 1993-2009 KIPR 148

Finding Color Blobs in an Image

© 1993-2009 KIPR 149

Color Blobs
• For color tracking, a rectangular piece of the color

selection plane is selected. All of the pixels in the
image whose color falls within that piece are selected.
– The camera resolution using the CBC is 160x120 = 19,200

pixels

• Selected pixels that are contiguous are combined as
blobs

• Each blob has a size, position, number of pixels,
major and minor axis, etc.

• The blobs correspond to objects seen in the image that
are the desired color (as given by the specified piece
of the color selection plane).

© 1993-2009 KIPR 150

Color Models

• The CBC can segment the image using four
different pieces of the HSV color selection plane
(each is called a color model) simultaneously

• It can track a number of blobs from each color
model

• It can display the video in any one of three ways
– Raw (live video)

– Match (pixels matching the color model are highlighted)

– Tracked (highlight matching pixels and show blob
boundaries and centroids)

© 1993-2009 KIPR 151

Color Vision Interface

• Raw image is
displayed

• Color Model 0 is
being manipulated

• The Bottom Right
corner of the color
selection box is being
adjusted

• It can be moved Left,
Right Up or Down

© 1993-2009 KIPR 152

Color Vision Interface

• Matched image is

being displayed

• Pixels that correspond

to selected color

region are shown

highlighted

© 1993-2009 KIPR 153

Color Vision Interface

• Tracked image is

displayed

• The bounding boxes

of the tracked blobs

are displayed (look

closely!), along with

the centroid of each

blob

© 1993-2009 KIPR 154

More on Color Models
• A Color Model-HSV specifies a bounding box in the color

selection plane

• Moving either edge towards the center line constrains the range
of accepted color values to only include more vivid colors (i.e.
only accept things that are more like Astro Brights paper).

• If everything you want is being accepted but so is a lot of other
junk you don't want, move the corners closer to the center.

– Moving either edge away from the center of the selection plane
includes less vivid colors in the color model.

• Moving the left edge away from center includes colors that are closer
to pastel than what is currently accepted.

• Move the right edge away from center includes darker colors than
what is currently accepted.

– Moving the top and bottom edges up and down changes the range
of hues accepted by the model.

© 1993-2009 KIPR 155

Built-in Vision Functions

© 1993-2009 KIPR 156

Vision Functions

• The normal use of the camera is for blob tracking

• Blob tracking functions use the active color models

you have established
• Color models are initialized from flash when you start the CBC

• There are vision functions for using a program to

access or alter the camera configuration (see KISS-C

help)

– For most purposes, you can accomplish all the camera

configuration that is necessary using the vision interface

accessed from the CBC menu display (i.e., using these

functions is for advanced users!)

© 1993-2009 KIPR 157

CBC Camera

• The camera should be plugged into one of
the CBC's USB ports

– Inserting or removing camera when CBC is on
may cause CBC to crash

– Best to plug in or remove camera when CBC is
turned off

– Camera uses a lot of power, so keep CBC
plugged in when creating color models, where
possible

© 1993-2009 KIPR 158

Color Tracking

• There are four channels numbered 0, 1, 2, 3 for
processing color models
– In the original configuration the models are set up to

roughly track red, yellow, green, and blue

– The camera field of view is treated as an x-y
(column,row) coordinate array

• The upper left corner has coordinates (0,0)

• The lower right corner has coordinates (159,119)

• The CBC display does not show the camera’s full field of view

x

y

© 1993-2009 KIPR 159

Color Tracking Functions
• Current camera tracking data is captured only when the

track_update() function is called

– Normally called prior to using other tracking functions

– If you don't call it, no other data will change

• The function track_count(<ch #>) is used to find out how many
blobs a channel currently has in view

– If the value is 0, the camera isn’t detecting any blobs for the channel

– The blobs are numbered starting from 0, with blob 0 being the largest blob

• track_size (<ch #>,<blob#>)
– gets the number of pixels in the blob

– maxes out (saturates) at 32,767 if the area gets that large

• track_confidence (<ch #>,<blob#>)
– gets the confidence for seeing the blob as a percentage of the blob pixel

area/bounding box area (range 0-100, low numbers bad, high numbers
good)

© 1993-2009 KIPR 160

 Getting Blob Data
• track_x (<ch #>,<blob#>)

track_y (<ch #>,<blob#>)
– Gets the x coordinate (column) or y coordinate (row) of the centroid of the blob

– The total visual field has (x,y)=(0,0) as the upper left and (x,y)=(159,119) as
the lower right

• These give the limiting values for track_x and track_y

• track_bbox_left(<ch #>,<blob#>)
track_bbox_right (<ch #>,<blob#>)
– Gets the x coordinate of the leftmost pixel or rightmost pixel in the blob

• track_bbox_top(<ch #>,<blob#>)
track_bbox_bottom (<ch #>,<blob#>)
– Gets the y coordinate of the topmost pixel or bottommost pixel in the blob

• track_bbox_width(<ch #>,<blob#>)
track_bbox_height (<ch #>,<blob#>)
– Gets the width of the bounding box

• same as track_bbox_right - track_bbox_left

– Gets the height of the bounding box

• same as track_bbox_bottom - track_bbox_top

© 1993-2009 KIPR 161

color-line.c Program for Create
// Makes robot follow object being tracked
// on color channel 0
int main()
{

int forwardSpeed=150, x;
create_connect(); // starts comm btw CBC and Create. LED should turn orange
wait_for_light(12); // Use light sensor in port 12
shut_down_in(60.25); // end program is 60.25 seconds
create_sensor_update(); // update create sensors (bumpers)
while(!gc_lbump && !gc_rbump){// loop until a bumper is pressed

track_update();//update the camera image
if(track_count(0)>0){// are there blobs on color 0?

x = track_x(0,0);//get x of largest blob on color channel 0
// drive direct drives right and left wheel speeds
create_drive_direct(forwardSpeed+2*(80-x), forwardSpeed+2*(x-80));
printf("Object at %d, %d\n",x,track_y(0,0));

}// end if
else {// no blobs on color 0

create_stop();
printf("No red seen\n");

}// end else
msleep(200);// slow loop so we can read prints
create_sensor_update();// update the bumper status

}//end while
printf("All done \n");
create_disconnect();//turn off comm to create
return 0;// gets rid of warning message on CBC compile

}

© 1993-2009 KIPR 162

Sensors

© 1993-2009 KIPR 163

Digital Sensors

• Digital sensors are ones which produce an “off”

(0) or “on” (1) signal.

• Graphical buttons serve as built-in digital sensors

for both the CBC and kissSim

• There are library functions specific to each built-in

sensor

• The CBC has digital “ports” to use with two-state

plug-in sensors

– accessed using the digital library function

© 1993-2009 KIPR 164

Analog Sensors

• Analog sensors are ones which produce a range of integer

values, not just 0 and 1

• The CBC has analog ports and floating analog ports for

plug-in sensors, which are accessed using either the

analog library function or the analog10 library

function

– With the analog function the return values are scaled to the

range is 0-255, with analog10, to 0-1023

• There are two types of analog sensors used with the CBC:

regular analog sensors (such as light sensors), and floating

analog sensors (such as distance sensors)

© 1993-2009 KIPR 165

• Detachable sensors use a keyed connector (2 wire or 3 wire, except for
USB connector on the camera)

– Analog sensors:

• Light (ports 8-12)

• IR reflectance (ports 8-12)

– Floating analog sensors:

• Optical rangefinder (ports 13-15)

– Digital sensors:

• Touch (ports 0-7)

– Special sensors:

• Ultrasonic rangefinder (sonar)

– (ports 13-15)

• CBC Camera

– (either USB port on CBC)

Detachable Sensors

© 1993-2009 KIPR 166

• Analog sensor

• Connect to ports 8-12

• Access with library function analog10(port#)
– You can also use analog(port#) for lower resolution

• Low values (near 0) indicate bright light

• High values (near 1023 for analog10, 255 for analog)
indicate low light

• Sensor is somewhat directional and can be made more so
using black paper or tape or an opaque straw or lego to
shade extraneous light. Sensor can be attenuated by
placing paper in front.

Light Sensors

© 1993-2009 KIPR 167

• Connect to ports 8-12

• Access with library function analog10(port#)
– You can also use analog(port#) for lower resolution

(0-255)

• Low values (0) indicate bright light, light color, or
close proximity

• High values (1023) indicate low light, dark color,
or distance of several inches

• Sensor has a reflectance range of about 3 inches

IR Reflectance Sensor “Top Hat”

© 1993-2009 KIPR 168

IR Reflectance Sensors

Amount of reflected IR depends on surface

texture, color, and distance to surface

© 1993-2009 KIPR 169

• Floating analog sensor

• Connect to ports 13-15

• Access with library function analog10(port#)
– You can also use analog(port#) for lower resolution

• Low values (0) indicate large distance

• High values indicate distance approaching ~4 inches

• Range is 4-30 inches. Result is approximately 1/d2.

Objects closer than 4 inches will produce values

indistinguishable from objects farther away

Optical Rangefinder “ET”

© 1993-2009 KIPR 170

Optical Rangefinder

Focused IR
 Beam

Lens

Position Sensing Device (PSD)

(high value)

(low value)

(low value)

© 1993-2009 KIPR 171

• Timed analog sensor

• Connect: port 13-15

• Access with library function sonar(port#)

• Returned value is distance in mm to closest
object in field of view

• Range is approximately 150-10000mm

• Important: when first powered on (when
CBC master power is turned on (if sonar is
plugged in) or when sonar is plugged in, if
master power is on), the sonar performs an
auto-calibration; the sonar should have a
clear view for at least 6 inches (15cm) at this
time

• Objects closer than 150mm will return
values of about 150mm.

Ultrasonic Rangefinder (Sonar)

© 1993-2009 KIPR 172

Ultrasonic Sensors

• Puts out a short burst of
high frequency sound

• Listens for the echo

• Speed of sound is
~300mm/ms

• sonar() times the echo,
divides by two and
multiplies by speed of
sound

• The sonar field of view is
an approximately 30o cone

sonar

Area of coverage

© 1993-2009 KIPR 173

Touch Sensors

• Digital sensor

• Connect to ports 1-7

• Access with library function
digital(port#)

• Three form factors in kit

• 1 indicates switch is closed

• 0 indicates switch is open

• These make good bumpers and
can be used for limit switches on
an actuator

© 1993-2009 KIPR 174

Create sensors

© 1993-2009 KIPR 175

Create Module

(from iRobot Create Owner’s Guide)

© 1993-2009 KIPR 176

 (Optional)

(from iRobot Create Owner’s Guide)

(Optional)

© 1993-2009 KIPR 177

Bumper and Wheel Drop Sensors
• Left and right bump sensors

• Left, right and caster wheel drop sensors

• The create_sensor_update() library function
updates the bumper and wheel drop globals with the
current values from the Create

– Values are True (1) or False (0)

• Globals are
– gc_fdrop (caster)

– gc_ldrop (left wheel)

– gc_rdrop (right wheel)

– gc_lbump (left bumper)

– gc_rbump (right bumper)

• If in “safe” mode (the mode initially established by
create_connect), detection of a wheel drop (on
any wheel) will cause Create to stop all motors and
revert to “passive” mode

– In passive mode actuator commands are ignored until
returned to “safe” or “full” mode by

• create_safe() or create_full()

– create_mode() sets the global gc_mode which can
be checked to determine if something has caused the
Create to switch to passive mode

© 1993-2009 KIPR 178

Cliff Sensors
• Located left, left-front, right-front, and right

• The create_sensor_update() library
function updates the cliff sensor globals with the
current sensor values from the Create

– Values are True (1) or False (0) for “base” variables
and 0-4095 for “amt” variables (reflectance strength)

• Globals are
– gc_lcliff, gc_lcliff_amt (left)

– gc_lfcliff, gc_lfcliff_amt (left front)

– gc_rfcliff, gc_rfcliff_amt (right front)

– gc_rcliff, gc_rcliff_amt (right)

• If in “safe” mode (the mode initially established by
create_connect), detection of a cliff sensor
while moving forward (or moving backward with a
small turning radius) will cause Create to stop all
motors and revert to “passive” mode

– In passive mode actuator commands are ignored until
returned to “safe” or “full” mode by
• create_safe() or create_full()

– create_mode() sets the global gc_mode which
can be checked to determine if something has caused
the Create to switch to passive mode

© 1993-2009 KIPR 179

Other

• See the KISS-C (CBC target) manual for

information on additional Create functions

• See Create Open Interface manual for gory

details on how commands work

© 1993-2009 KIPR 180

Motors & Servos

© 1993-2009 KIPR 181

DC Motors
• DC motors (gray cables or

red and black cables with
2 prong plugs) plug into
the CBC motor ports

• The CBC has 4 motor
ports numbered 0,1,2,3
– 0, 1 are on the left side

– 2, 3 are on the right side

© 1993-2009 KIPR 182

• DC motors (gray cable or red and black
cable) plug directly into CBC motor ports

• If the motor position counter on the Motor
CBC Status Display decreases when the
motor is manually turned in what you want to
be the forward direction, simply flip the plug
180 degrees to correct

• The gray cable motors have a high stall
torque of about 48 in-oz
– They come with a red horn mounted to the motor

shaft. Different horns can be attached by
removing the screw in the motor shaft and lifting
off the old horn.

– Lego pieces can be attached to the servo horns
using either U-glu or screws. The screwdriver
included in your kit can be used for this purpose
(the screwdriver cannot be used as part of a
robot!)

DC Motors

© 1993-2009 KIPR 183

More DC Motors

• The motors with a red and

black cable have a socket for

an IFI axle for mounting

wheels or gears

• LEGO and/or IFI parts may

be attached to the IFI axle

• This motor is a little slower

and has slightly higher torque

than the black gear motor

with the gray cable

© 1993-2009 KIPR 184

Motor Functions

© 1993-2009 KIPR 185

CBC Motor Functions

• The CBC uses intermittent measurements of the

motor back EMF (electromagnetic force) to

estimate motor position and velocity. This can be

considered magic as far as Botball is concerned.

See appendix.

• For the DC motors (red and black wire or gray

wire) included with the CBC electronics kit, one

full rotation = about 1100 “ticks” -- a unit of

measure for rotation

© 1993-2009 KIPR 186

Useful CBC Motor Functions

• Get the current tick count of motor 0:
get_motor_position_counter(0);

• Set the current tick count of motor 0 to 0L:
clear_motor_position_counter(0);

• Move the motor backwards at 50% power: motor(0,-50);

• Move a motor forward at 100% motor(0,100);

• Turn motor 0 off: off(0);

• Turn all motors off: ao();

• Run a motor at a specific velocity (0.5rps) mav(0,550);

• Run a motor to specific position mtp(0,550,5000);

• Run a motor about one rev back from current position mrp(0,550,-1100);

• Wait for the previous command to finish before advancing in your program
bmd(0);

• See CBC Motors in the Appendix for more details

© 1993-2009 KIPR 187

Example Using motor

• This example moves

the robot 2200 ticks

forward

• The while loop

checks the motor

position and then exits

when the motor is in

the right place.

int main()
{
 //show robot world
 kissSim_init(BB09WORLD,
 151,32,1.5708);
 clear_motor_position_counter(0);
 //move both motors fwd
 motor(0, 70);
 motor(1, 70);
 //Now wait till motor 0
 //has rotated about twice
 while(get_motor_position_counter(0)<2200){}
 //turn both motors off
 ao();
 kissSimPause();
}

© 1993-2009 KIPR 188

Example Using BEMF

• This example moves the robot
2200 ticks forward, then one
motor turns back

• Notice the difference between
moving to and moving relative
to a position

• Block motor done halts your
program until the motor
reaches the desired position.

• Move at velocity moves at a
velocity, forever or until
changed.

• Motors, once they reach their
specific destination, will
actively stay there until moved
somewhere else or turned off.

int main()
{
 //show robot world
 kissSim_init(BB09WORLD,
 151,32,1.5708);
 clear_motor_position_counter(0);
 clear_motor_position_counter(1);
 //move both motors fwd
 mtp(1,550,2200); //move both motors fwd
 mav(0,550);
 bmd(1); //wait for motors to reach position
 off(0); //stop the mav motor
 mrp(0,55,-2200); //move motors back to 0
 bmd(0); //wait for motor to reach position
 off(1); //Motor 1 is now limp
 // motor 0 is holding its position actively
 sleep(10); // wait 10 seconds
 ao(); // now everything is off
 printf("All done\n"); // now everything is off
 kissSimPause();
}

© 1993-2009 KIPR 189

Servo Motors

© 1993-2009 KIPR 190

Servos
• Servo motors (black-red-yellow cables with 3 prong

receptacle) plug into the CBC servo ports
– These are the ones with a white horn installed

• The CBC has 4 servo ports numbered 2 & 1 on the left and 4

& 3 on the right (why? don't ask!)

• Plug orientation order is, left to right,

black, red & yellow when the CBC is

oriented so the screen can be read

servo ports 4 & 3

black wire

red wire

yellow wire

© 1993-2009 KIPR 191

Servos
• Servos are motors that are designed to rotate

 to a specified position and hold it

• enable_servos();
– Activates all servo ports

• disable_servos();
– De-activates all servo ports

• set_servo_position(<s#>,<pos>);
– Rotates servo in the specified port to the specified position
– set_servo_position(2,1234);

• Sets the position for servo port 2 to 1234

• If servos are enabled, the servo in port 2 rotates to position 1234

– Position range is 0-2047

– You can preset a servo’s position before enabling servos

– Default position when servos are first enabled is 1024

• get_servo_position(<s#>)
– Returns an int for the specified servo whose value is the current

position for which the servo is set

• Note: Servos may run up against their stops at low or high position values.
Giving a servo such a position command will suck power at an alarming rate!

• Note: Servos acting weird or not working is an indication the battery is low

© 1993-2009 KIPR 192

Example Servo Program
int main(){
 enable_servos(); // turn servos on and
 // rotate to default position (1024)
 printf("moving to 640\n");
 set_servo_position(3,640); // rotate servo 3 to 640
 sleep(2); // give plenty of time for servo to move
 printf("moving to 1800\n");
 set_servo_position(3,1800); // rotate servo 3 to 1800
 sleep(2);
 printf("moving to 640\n");
 set_servo_position(3,640); // rotate servo 3 back to 640
 sleep(2);
 disable_servos(); // turn servos off
 printf("Done\n");
}

© 1993-2009 KIPR 193

Charging and CBC Motors

• When charging, the battery (7.2v) is disconnected
and the system is powered by the charger (13.5v)

• Motors and servos run faster at higher voltage

• BEMF motor commands will try and run at the
correct speed, but the PWM commands will run
much faster with the charger plugged in

• Motors and servos will jitter more and behave
slightly differently when the CBC is plugged into
the charger or is charging from the Create then
they will when running on battery

© 1993-2009 KIPR 194

Create Motor Functions (1)
• The Create uses differential steering with two motorized drive

wheels

– The drive wheels and the forward pivoting wheel are spring loaded so

that if the Create is picked up (or runs off of a cliff) the wheel drop can

be detected

• Clips can be attached to the drive wheels to keep them from dropping

– An optional (stabilizer) non-pivoting wheel can be installed at the rear

• Keeps Create from doing a “wheely” causing a forward wheel drop

• The library function create_drive_direct allows

independent control of wheel speeds
– void create_drive_direct(int r_speed, int l_speed);

• r_speed for the right motor and l_speed for the left motor

• Speeds can range between +/-500mm/sec

© 1993-2009 KIPR 195

Create Motor Functions (2)
• The create_drive function moves the Create along an arc of

specified radius
– void create_drive (int speed, int radius)

• speeds can range between +/-500mm/sec

• radius is -2000 to +2000 mm
– radius < 0 for an arc turning right

– radius > 0 for an arc turning left

• radius of arc is measured to center of Create between the wheels

• Special cases
– a radius of 32767 will drive the robot straight

• Implemented as the create_drive_straight(<speed>) library function

– a radius of 1 will spin the robot CCW
• Implemented as the create_spin_CCW(<speed>) library function

– a radius of -1 will spin the robot CW
• Implemented as the create_spin_CW(<speed>) library function

– a radius of 0 and speed of 0 will stop the robot
• Implemented as the create_stop(<speed>) library function

© 1993-2009 KIPR 196

Testing Motors and Sensors on

the CBC

© 1993-2009 KIPR 197

CBC Motors and Sensors Screen
for Testing Sensors and DC Motors

© 1993-2009 KIPR 198

Using the CBC with the Create

Demobot

© 1993-2009 KIPR 199

Exercise #10: CBC & Create
1. Gather (see pictures on next 3 slides) :

a) Your Demobot
b) A CBC
c) The Create/CBC cable
d) USB flash drive

2. Plug the lever sensor at the end of the arm into digital port 1

3. Plug the lever sensor near the motors into digital port 0

4. Plug the servo into servo port 4

5. Plug the motor into motor port 3

6. On the CBC go to the Sensors page

1. Look at the position listed for motor 0

2. Gently pull up on the end of the arm and notice how the value shown on
the CBC changes

3. If the value goes down, unplug the motor, rotate the plug 180 degrees and
insert it back into motor port 0

4. If the value goes up when the arm is moved slightly up -- leave the plug as
it is

© 1993-2009 KIPR 200

Exercise #10: Continued
1. Make a new program in KISS-C (see code on next slide)

2. Make sure the program compiles in KISS-C

3. Copy the program onto a flash drive, and rename it on the flash drive to
robot.c

4. Insert the flash drive into the CBC

1. select the Programs page

2. press the Compile button

• If it says flash key not found, wait a few seconds and press Compile again

• If it reports errors, note what they are, and alter your program accordingly (you will
need to remove the flash drive, copy the corrected version onto the flash and recompile
it on the CBC

• If it compiles successfully, remove the key

5. Make sure the CBC is correctly connected to the Create

6. Turn on the Create and unplug the USB cable from the CBC

7. Run your program on the CBC to move the arm

• The program requires you to press the black button to start the program. If your
arm seems to be jamming, or goes to far, press and release the black button as
needed to stop the program

© 1993-2009 KIPR 201

Exercise 10: Code
// Moves the demobot arm to the middle position
int main() {

int upPos, downPos, middlePos;
printf("Press Black Button to start\n");
while(!black_button()); while(black_button()); // press & release
set_servo_position(4,1023); // set servo position for middle
enable_servos(); // turn on servos
motor(3,50); // start arm up
while(!digital(0) && !black_button()) msleep(10); // dig 0 is up sensor
off(3);
upPos = get_motor_position_counter(3);
while(black_button()) {} // if pressed, wait for release
motor(3,-50); // start arm down
while(!digital(1) && !black_button()) msleep(10); // dig 1 is down sensor
downPos = get_motor_position_counter(3);
off(3);
while(black_button()) {} // if pressed, wait for release
middlePos = (upPos - downPos)/2 + downPos;
mtp(3,500,middlePos); // Move arm to specific position
bmd(3); // wait until motor has reached destination
printf("At the middle position\n");
ao(); disable_servos(); // all motors and servos off
printf("Program finished\n"); return 0;

}

© 1993-2009 KIPR 202

Attach Demobot’s Cables

DC motor

(red/black cable)

servo motor

(black-red-

yellow cable)CBC-Create

front touch

sensor

rear touch

sensor

© 1993-2009 KIPR 203

Cargo Bay & Serial Connections
CBC-Create Cable

Cargo Bay connection Serial connection – won’t

work unless plugged in with

red side towards the two

USB ports

© 1993-2009 KIPR 204

CBC in Cargo Bay

© 1993-2009 KIPR 205

Exercise #11: Experiments with

Demobot
• Type in and run the color_line program given earlier

• You will need to first make a color model on channel 0

that tracks some object you can put in front of your robot

• After this program has been loaded on your demobot and is

working

– Modify it so it slows down when the something gets

closer (use a sensor, or the Y position in the image)

– Add in an arm motion when you get near an object

– Be creative (or move on to the last exercise)

© 1993-2009 KIPR 206

Exercise #12
Testing Your CBC, Sensors & Motors

• Turn on your CBC

• From the main menu select the motors & sensors screen

– Connect and test all of your motors; be sure to use all 4 motor ports to ensure all
of the ports are working as well (you will need to write a simple program)

– Connect and test the servos (one at a time)

– Remember that the digital ports are 0-7 and the analog ports are 8-15, with 13-
15 reserved for ET and sonar

– Connect sonar and ET sensors in ports 13-15 and check for values changing on
the status screen in response to moving the sensor

– Connect and test the digital sensors in ports 0-7 and check to see if triggering
them changes corresponding values on the status screen

– Connect and test the remaining analog sensors (light and reflectance) and note if
values change on the status screen in response to light/reflectance

• Select the vision system

– Install the camera in a USB port and test the vision system; focus can be
adjusted by gently turning the front of the lens

© 1993-2009 KIPR 207

Critical Things to Know if You

Don’t Want to Embarrass

Yourself at the Tournament

© 1993-2009 KIPR 208

Shielding Light Sensors

© 1993-2009 KIPR 209

YOU MUST SHIELD YOUR

LIGHT SENSOR
• The table will be brightly lit

• Overhead lights from the game table will flood an unshielded
sensor rendering it incapable of seeing the starting light

• Light sensors only need a little light to work, and it should be
shielded from all extraneous sources

• Opaque objects stop light (e.g., foil, black electrical tape)

• Soda straws are not opaque; Printer paper is not opaque; Two
layers of printer paper are not opaque; A straw wrapped in
printer paper is not opaque.

© 1993-2009 KIPR 210

How to Shield a Light Sensor

No!!

Yes!

1 2

3

Wrap segment of plastic straw in tape

Slide straw over

light sensor

(leave a gap in

the front) and

tape in place

© 1993-2009 KIPR 211

Exercise:

Create A Botball Program
Have your Team Do this the First Week!!!

• Modify one of your workshop programs and be

sure to incorporate the Botball utilities:

– Add a light sensor to your robot and use the
wait_for_light(<port>) function to calibrate it

– Use the shut_down_in(<time>) function to turn

your robot off after 30 seconds

– Remember: In the real situation, the light sensor will

require shielding

© 1993-2009 KIPR 212

good

enough?

(or out of time)

Engineering Life Cycle

Declare victory

and sleep

Extract

Requirements
Concept

Generation

Model

PrototypeTest

Analyze

Problem

Statement

© 1993-2009 KIPR 213

Handy References

• homebase.kipr.org

• NASA Robotics Alliance Project: CBC course
– http://robotics.nasa.gov/courses/summer06

• Gears
– http://www.kipr.org/curriculum/gears.html

• Tutorial on how Back EMF works:
– http://www.acroname.com/robotics/info/articles/back-emf/back-emf.html

• Navigation lessons & integrating Botball in a class
– http://www.botball.org/educational-resources/curriculum.php

• Good explanation of Multi-voting
– http://www.ca.uky.edu/agpsd/multivot.pdf

• More details on using 6 Hats (DeBono Hats)
– http://www.mindtools.com/pages/article/newTED_07.htm

© 1993-2009 KIPR 214

END

© 1993-2009 KIPR 215

Appendices

© 1993-2009 KIPR 216

Appendix Index

• Updating the Kernel

• Recalibrating the CBC Screen

• The Design Process/Team Building

© 1993-2009 KIPR 217

Kernel Update

• A firmware update may also require doing a kernel update – if this is

needed you will be told! (this is a rare event)

• After doing the firmware update and pressing the (red) boot/off button

turning off the screen, you access the CBC’s special options menu by

pressing on the CBC’s touch screen while booting the CBC

© 1993-2009 KIPR 218

Kernel Update (2)

• Continue pressing the screen until the

special options menu appears

© 1993-2009 KIPR 219

Kernel Update (3)

• Once the special options menu has loaded, press “Install updates”

• The system will install the kernel update from your firmware update and

reboot

© 1993-2009 KIPR 220

Kernel Update (4)

• Press “Install from USB flash drive”

– This is the CBC’s internal flash drive, not the memory stick you

plugged in for firmware update

© 1993-2009 KIPR 221

Screen Calibration

• After doing a firmware update, or a kernel
update, the system may require you to re-
calibrate the touch screen

– If this is needed, the system will bring up the
calibration screen on its own

• If you calibrate the screen incorrectly, or if
you wish to redo the screen calibration, you
can start up the calibration process on your
own

© 1993-2009 KIPR 222

Manually Initiating

Screen Re-Calibration
• Shutdown the CBC using the onscreen power button, or if necessary,

pressing the (red) boot/off button.

• You access the CBC’s special options menu by pressing on the CBC’s

touch screen while booting the CBC

© 1993-2009 KIPR 223

Screen Re-Calibration

• Continue pressing the screen until the

special options menu appears

© 1993-2009 KIPR 224

Re-Calibration

• Once the special options menu has loaded, press “Restore Factory

Settings”

• The system will wipe the calibration settings, reboot and bring up the

calibration screen

© 1993-2009 KIPR 225

Calibration
• When the CBC reboots, the screen calibration routine will run

• Do calibration carefully

• If calibration is done incorrectly, you can fix it later by booting into special options

and pressing "Restore Factory Settings", which will rerun the calibration program

© 1993-2009 KIPR 226

Botball is an R&D Project

© 1993-2009 KIPR 227

Project Management

• Projects fail because of poor management at

all levels

• In the appendices there are do’s and don’ts

for organizing and managing projects

• Don’t wait until your team members mutiny

before trying to implement some or all of

these suggestions

© 1993-2009 KIPR 228

The Design Process

• In addition to an organized team, you need a
process for the team to follow.

• The engineering design process can provide a
good model:
1. Define the problem through a list of requirements

2. Explore the solution space

3. Select a solution

4. Prototype and refine the solution
• Repeat 4 at increasing levels of fidelity

© 1993-2009 KIPR 229

Start with a task

© 1993-2009 KIPR 230

??

?

?

What are the requirements?

© 1993-2009 KIPR 231

fit in the start box

start when the light goes on

turn off all motors at the end of the round

don’t shoot untethered projectiles

use only the parts supplied in the kit

no entanglement of the other robot

© 1993-2009 KIPR 232

Design Stages

• Once a problem/task has been defined, and the
requirements have been identified, then a design goes
through the following:

1. Conception

– create ideas come up with specific goals

2. Evaluation

– select the promising ideas and interesting goals

– Derive the design requirements--those unique to your selected
idea and goals.

3. Implementation

– Create a project plan with a schedule and task assignments.

– Implement all of the parts; integrate them together; test; test;
sleep; test.

© 1993-2009 KIPR 233

• Look at the problem (both in text and graphics)

• Let it stew for some time

• Then start an idea generation exercise

• There are many different methods, e.g.:

– Systematic

• Examine past solutions

• Examine solutions to similar

problems

Conception

– Intuitive
• Brainstorming
• Brain Writing

© 1993-2009 KIPR 234

Brainstorming

1. formulate the task as a question “How can we .…?”

2. take a few minutes in silence to individually write down
ideas

3. keep your ideas short and snappy

4. each person reads out one idea

5. no criticism of ideas is allowed - reserve judgment -
crazy ideas welcome (THIS REQUIRES DISCIPLINE)

6. build on or combine the ideas of others to create
additional ideas

7. record ALL the ideas

© 1993-2009 KIPR 235

Brain Writing

1. Identify problem

2. Sit in circle

3. Each person silently generates an idea and
writes it down

4. Ideas are passed to the right

5. Person uses the idea they were passed and
expands on it or uses it as a primer for a new
idea

6. Repeat the process

© 1993-2009 KIPR 236

Idea generation creates the

space of what you can do

© 1993-2009 KIPR 237

Evaluation
• Go from many ideas to a few promising ideas

• Eliminate those that will not solve problem (clearly do not
meet the requirements)

• Eliminate those that clearly cannot work (violate laws of
physics)

• Eliminate those that cannot be done by your team (require
skills or time that is definitely not available)

• Use evaluation techniques (e.g., six hats) to help with
selection

• Use selection technique (e.g., multi-voting) to reach
consensus

• If there are several good ideas, all of which will work, vote
on the one that the team should pursue

• Do not pursue multiple solutions unless there are adequate
resources to complete them -- or unless a firm date to
descope to a single solution is agreed upon

© 1993-2009 KIPR 238

Your team’s goals will

limit what you should do

Decide what you want to do

© 1993-2009 KIPR 239

Create Concept Sketches of

Promising ideas

© 1993-2009 KIPR 240

Create Sketch Models of the Best

Concepts

© 1993-2009 KIPR 241

Perform a preliminary simulation

• Move sketch model as a puppet through the motions and
through the scenario

• Have team members act out the parts of the robot to make sure
the ideas make sense

• Create a CAD model and perform a kinematic and/or dynamic
simulation
– We’ve provided you with an excellent CAD package (SolidWorks)

– We’ve provided you with models of all the kit parts

– SolidWorks can be used to do both kinematic and dynamic simulation

– Judges are easily wowed by use of SolidWorks on your documentation

• Simulation will help eliminate some ideas and spark new ones

© 1993-2009 KIPR 242

Create a full experimental

prototype
• Do a first draft of the full system

– Mechanics

– Software

– Electronics

• Don’t worry about “polish” but include all major
functions

• Plan on making major modifications from the
lessons you learn from this experimental system

© 1993-2009 KIPR 243

Create a Final System

• Based on tests of the experimental system

• Incorporates changes and improvements

• There may be several experimental versions

before it reaches “final” state

• Allow enough time for at least two iterations

• It does not count as an iteration unless you have

tested it thoroughly under realistic conditions

© 1993-2009 KIPR 244

Time

S
o
lu

ti
o
n
 S

p
a
c
e

Conception Evaluation Implementation

Simulation

© 1993-2009 KIPR 245

good

enough?

(or out of time)

Engineering Life Cycle

Declare victory

and sleep

Extract

Requirements
Concept

Generation

Model

PrototypeTest

Analyze

Problem

Statement

