
Navigation Using Position Tracking

Wesley Y. Myers

Ethan Y. Myers

Cedar Brook Academy

Navigation Using Position Tracking

1. Introduction

 This paper presents how to navigate using position tracking. Position tracking is

where the robot keeps track of its position by monitoring its motion. We described our

implementation of position tracking at last year’s conference
[1]

 and that paper is

summarized in the next section.

2. Background – Position Tracking

Position tracking is where the robot uses measurements of the wheel motion to

keep track of its location and heading. To do position tracking, a coordinate system is

first established. In this case, the game table is overlaid with a coordinate system, which

has its origin at the bottom left corner. Since the table’s width is 48 inches, the domain

becomes [0,48]. The length of the table is 96 inches, so the range is [0,96]. Thus, the

coordinate of the top right corner of the table is (48,96). The direction is in radians where

0 radians is parallel to the x-axis going from left to right. (See Figure 1)

Figure 1 – 2006 Botball Table

 When a robot moves, its movement can be

represented as a vector consisting of direction and

distance. In a given amount of time, the robot will move

some distance along a direction from a known position.

This movement has to be translated into a new position in

the table’s coordinate system. The average movement of

both of the robot’s wheels provides the measurement for

the distance that the robot has traveled, and the difference

between the right and left wheels’ movement can be used

to calculate the change in direction.

 The XBC uses Back EMF to record how much the

motors have moved the wheels[2]. This information is

obtained by using the get_motor_position_counter

function of the XBC firmware. The distance traveled by

each wheel is calculated by subtracting the previous

counters from the current counters to get the number of

ticks traveled by each motor. The result is then divided by a conversion factor that

changes the units into inches to get !right_distance and !left_distance. Each motor has a

different conversion factor because each motor is slightly different.

!left_distance = (left_counts – previous_left_counts) / left_counts_inch

!right_distance = (right_counts – previous_right_counts) / right_counts_inch

!distance = (!right_distance + !left_distance)/2

 Given the direction and the distance, trigonometry is used to find !x and !y. So:

!x = !distance * cos(direction)

!y = !distance * sin(direction)

To get the new location, we add !x and !y to the original location values. To calculate

the change in heading, we recognize that any difference between !right_distance and

!left_distance will cause the robot to change direction. The direction change is equal to:

(!right_distance - !left_distance)/(the distance between the wheels)

 Figure 2 Figure 3

Where Track Width is equal to the distance between the wheels.

3.0 Navigation

 Our navigation functions are based on getting and keeping the robot pointed in the

proper direction as the robot moves. For rotation, the robot is turned in place until it

points to the correct direction, while in go_to_point the robot is kept pointed at the

destination until the destination is reached.

3.1 Navigation – Rotation

 One of the most important things when it comes to navigation is turning in the

direction you want. The first step in turning to the correct direction is getting the current

heading. The position tracking code provides the heading information. To find how far

the robot needs to turn, the difference between the current and desired direction has to be

calculated (1.1). To keep the result within the range of [-2", 2"], the result is normalized

(1.2). An interesting result from normalization is that the shortest rotation direction is

also found. We know from trigonometry that -3"/2 is equivalent to "/2 and 4" is

equivalent to 2" (Figure 4).

 It is important to note that at the completion of this function, the robot will not

be exactly pointed in the desired direction, or no zero error. Because obtaining zero error

is impossible because of imprecision in controlling the motors, a small error such as .1

radian is suitable for our use. So, as the robot turns, the absolute error is continuously

checked until it is within the desired limits of error (1.3).

(1.1) error = target_heading – current_heading;

(1.2) error = normalize_heading(error);

(1.3) while(absolute_error < absolute_value(rotation_error))

 turn();

 Figure 4

3.2 Navigation – Go_to_Point

 Another feature of the

navigation library is to move the

robot to a point on the table. The

go_to_point function does this by

keeping the robot pointed at the

destination while the robot is

moving and stopping when the

robot has reached the destination.

This is based on RidgeSoft’s

paper
[3]

.

 Go_to_point has to

continuously deal with any

directional error as the robot moves

towards the destination. If the robot is traveling in the correct direction, then it will go

straight to the point. However, in the beginning, as the robot starts moving, there is

usually error in the robot’s direction, which needs to be corrected. Also, the robot needs

to periodically deal with error as it moves to the destination. To do this, the directional

error is determined by determining the difference between the current direction and the

direction the robot needs to take to get to the end point. (Figure 6) To find the new

direction to the destination, the inverse tangent of !x and !y is used to find the angle,

theta. (Figure 5)

 Figure 5

 The error is multiplied by a factor to determine

the power levels supplied to the motors. Generally, the

power is reduced to the motor on the side where we

want the robot to turn. By doing this, it not only keeps

the robot pointed in the right direction, but it also gets it

to the destination. If the robot is also pointed in the

wrong direction in the beginning, it will realize that and

vary the wheel speed so that it will turn in the correct

direction and then start moving. Over the course of the

robot traveling to the point, it periodically checks and

corrects its alignment on the target point. This keeps

the robot lined up on the target.

 Figure 6
[3]

 As in the rotate function, we also need to

find how far off the robot is from where it needs to

go. So the difference is taken between the current

and desired locations, and take the absolute value of

them (1.4). When the sum of the x and y errors are

less than the allowed error, then the robot is at the

desired location. We recognize that the proper way

is to use Pythagorean’s Theorem. It provides a

more correct answer, but the current method gets

the robot close enough and saves processing time.

(1.4) x_error = go_to_x – current_x;

 y_error = go_to_y – current_y;

 absolute_x_error = absolute_value(x_error);

 absolute_y_error = absolute_value(y_error);

 Since the robot sometimes needs to get to tricky places, go_to_point can also

make the robot go backwards instead of forwards. This is done by adding " to the current

direction when calculating the directional error. This, in effect, reverses the direction that

the robot will be moving. The other difference is that the wheel powers are reversed so

that it can drive backwards.

3.3 Navigation – Going Straight

 A basic capability that every robot needs is the ability to go straight, without

moving in a curve to one side. The Go to Point function discussed in Section 3.2 can be

used to do this by calculating the endpoint based on the desired distance. Trigonometry

is used to calculate the endpoint.

 There are a couple things already known: the robot’s current position, heading,

and the distance the robot is to travel. From Trigonometry we know a couple of rules

about right triangles. The cosine of the angle is really the x length divided by the

hypotenuse and the sine of the angle is the y length divided by the hypotenuse.

(1.5) cos(!) = x/z, where z is the hypotenuse

(1.6) sin(!) = y/z, where z is the hypotenuse

Thus:

!x = distance * cos(direction)

!y = distance * sin(direction)

 The destination is determined by adding !x and !y to our current location. Then

go_to_point is called with the destination coordinates as the parameters. Since the robot

is already pointing at the destination, it will go straight there.

Figure 7

4.0 Status

 Most of the Navigation Library was implemented between last year’s (2006)

regional and national tournaments. One of our robots successfully used the navigation

library in conjunction with the position tracking library at the last year’s nationals. At

this year’s regional tournament, both of our robots successfully used these libraries. We

have found that this library, in particular go_to_point function, has greatly simplified our

navigation. Most of our dead reckoning instructions use go_to_point instead of the motor

commands. For example, if we need to add an intermediate turn or point, we just add a

call to go_to_point instead of having to recalculate a whole sequence of motor

commands. Finally, even though the position library gains error over time, our strategies

are such that we move to within a couple of inches of the destination and use sensors to

get us the rest of the way. In summary, our navigation library is a very useful library.

References

[1] Myers, Wesley, Myers, Ethan. "Position Tracking Using the XBC." Proceedings of

the 5th Annual Conference on Educational Robotics 7 July 2006: 157-163.

[2] R. LeGrand, K. Machulis, D. Miller, R. Sargent and A. Wright, “The XBC: a Modern

Low-Cost Mobile Robot Controller,” Proceeding of IROS 2005, IEEE Press, 2005.

[3] RidgeSoft. "Programming Your Robot To Navigate." RidgeSoft, LLC. (2005): 1-27.

