

Flight Readiness Review Briefing

Introductions and Flight Mission Roles

Visesh Safety Pilot/Pilot in Command

David Air Boss/Back-up Pilot

Jasmine Mission Planner Specialist

Nathan Safety Tech/Scoring Captain

Strategic Technician

7/27/2022

Muhammad

System Overview - Flight Method Strategy and Tasks

- 1. Accomplish autonomous objectives
 - Map locations of scoring items while completing autonomous objectives
- 2. Fly to drop-off targets
 - Record coordinates of drop-off targets
- 3. Semi-autonomous pick-up (waypoint navigation/manual pick-up)
- 4. Fully autonomous drop-off (waypoint navigation/auto drop-off)
- 5. Hybrid search for further scoring items
- 6. Autonomous takeoff and landing

System Overview - Expected Performance

- All 6 waypoints captured
- 3 water bottles transferred
- Autonomy-assisted pick-up
- Autonomous drop-off
- Mission completed within<25 minutes flight time
- Autonomous takeoff and landing

System Overview - Risk Evaluation

Risk	Risk Type	Mitigation
Flight Beyond Visual Line Of Sight (BVLOS)	Safety	Confirmed with flight directors that a visual observer will monitor the drone and communicate w/ PIC
Quadcopter flips after landing	Safety	Land in stabilized mode - not LOITER
Autonomous bottle release procedure: ■ GPS coordinate margin of error → unsafe landing location	Safety / Scoring	Release points: Air - Water bottle could bounce Ground - More control over end bottle location, but risk of breaking landing legs or vehicle
Bottle falls unexpectedly during flight	Scoring	Pick-up immediately or return later (may be worthwhile to complete other mission objectives first)
GPS navigational system inaccuracy	Scoring	Switch to manual flying

System Overview - Risk Evaluation – A.I.

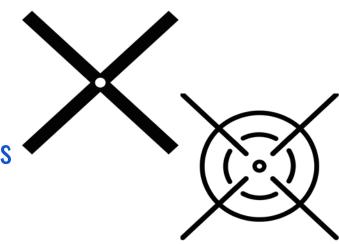
Algorithms	Pros	Cons
Template Matching	- Easy to implement given reference image of target	- Has difficulty with transformations
Feature Matching	Higher accuracyCan handle variations in size and rotation	 More complicated than Template matching Single-core CPU bound algorithm
Convolutional Neural Network Matching	Highest accuracyLowest inference time (GPU acceleration)	- Most difficult to implement (training)

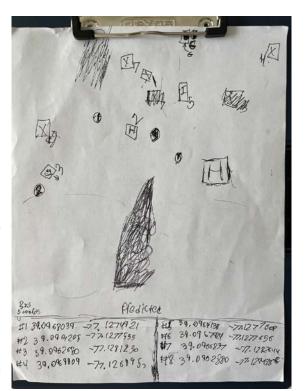
System Overview - Mission Planner Usage

- Monitor aircraft telemetry data
- Safety dashboard (arm/disarm, GPS status, flight mode)
- Program autonomous missions
- Control water bottle grabber servo
- Simulate missions
- Use flight log to diagnose problems

System Overview - Monitor Usage

Flight decisions made based on:


- Latitude/Longitude
- Altitude
- Throttle Percentage
- Battery Voltage
- GPS Lock
- GPS Satellite Count
- Flight Mode



System Overview - Maps

Consolidation of Data:

- Target location relative to surface features
- Type of Target
- Latitude/Longitude
- Landmarks/Obstacles
- Review after flight

System Safety - Operational Strategies

ALL flights conducted:

- With supervising adult
- In visual line of sight or Visual Observer
- BELOW 400 feet and within FAA regulations

NO flights conducted:

- Without performing pre-flight inspection
- In bad weather or bad visibility
- Over people or buildings

System Safety - Design and Operational Strategies

- Grabber string locks
- Break-away legs
- Appropriate servo limit calibration
- Verified failsafe RTL action
- Maintain safe altitude when crossing over obstacles

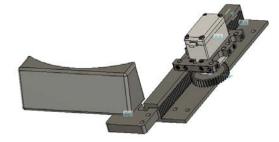
System Safety - Maintenance and Checklists

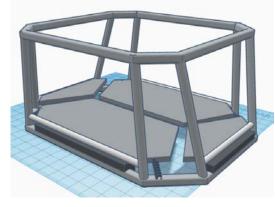
- We use checklists to enforce safety
 - Pre-flight
 - Post-flight
- We inspect all aircraft parts before each flight
- Repairs are made with consent from all team members

Developmental Test - Test Planning

- 1. Prototype Completion
- 2. Independent System Test (off quad)
- 3. Integrated Ground Test (on quad)
- 4. Basic Flight Test (airworthiness)
- 5. Aerial System Test in open field
- 6. Mission Performance Test

Developmental Test - Ground and Mission Performance


- Plan to simulate competition flight experience:
 - Find scoring items (autonomous map method followed by manual search)
 - Transfer water bottles
 - Complete autonomous objectives

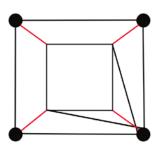


Developmental Test - Design Framework

- Competitive selection framework
- Concept \rightarrow CAD Model \rightarrow Low cost prototype
- Cost benefit analysis of functional prototype: Reverse trapdoor won
- Initial flight testing of prototype w/ minimal integration effort

Developmental Test - Initial Results

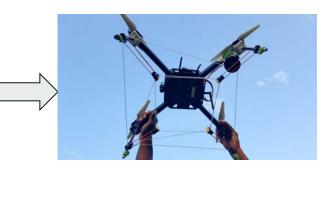
- Goal: Expand the "flight envelope" to address all aspects of the competition flight tasks
- Discoveries:
 - High amp draw (>20 A)
 - Pickup Attempts knocked over bottle
 - Inexact landing due to offset camera position
- Developed criteria for new design



Developmental Test - Mods to Improve Mission Effectiveness

- **MEAW Acquisition System:**
 - New string-based web design
 - Multiple individually optimizable components
 - Leveraged team experience in other robotics activities
- New string path crosses over once and encircles landing legs
 - Uses low-friction carbon fiber tubes as "pulleys"
- Strategically placed capture location
 - Bottle captures on opposite arm of servo
 - CG maintained within $\frac{1}{2}$ " of frame center
 - Constant view of payload from camera

MEAW Motorized Elastic Assisted Web



Developmental Test - Design Progression

- Different string types
 - Warp thread
 - Fishing line
- Rubber band types

- Servo mounts
- Extended legs
- Guiding clamp designs and features
- Rubber pads = less compression

Evidence of Mission Accomplishments

- Consecutive successful bottle pickup and drops
- Accurately identified coordinates (<15 ft) and content of target objects
- Safety protocols effectively ensured no damage to persons or property
- Team members effectively executed assigned roles

Pre-Mission Briefing - Personnel Resourcing

- Defined responsibilities based on roles
- Roles assigned based on skills and interests
- Defined personnel positioning and tasks based on flight status
 - Grounded-preflight
 - Flying
 - Grounded-post flight

Pre-Mission Briefing - Team Comms

Maintaining communication with team roles:

- All non-essential activities are forbidden (sterile cockpit)
- Share essential information
- Each role has specific call outs
- Maintain records of each flight

Pre-Mission Briefing - Go/No-Go Criteria

Discussions and briefings include:

Before Flight

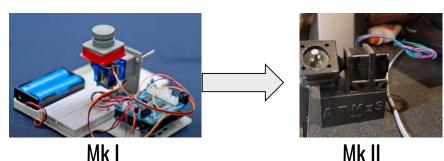
- Weather
- Airspace Activity
- Presence of people
- Condition of Quad

During Flight

- Aircraft Performance
- Wind Speed
- Battery Condition
- Airspace Activity

Pre-Mission Briefing - Fall Back Plans

If any risk to safety is present:


- Return to launch (RTL) immediately
- Adjust altitude to avoid obstacle
- Reschedule flight or travel to other fields
- Inspect/repair/inspect quad thoroughly

Social Outreach

- Local science day presentation
 - Introduce community to drones/explorer post
- Personal projects
 - o E.g., "ATMoS" camera gimbal

AT Mos

